首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The hydrogen evolution reaction (HER) using earth-abundant noble-metal-free catalysts has gained substantial interest in electrocatalytic water splitting technologies, particularly in water-alkali electrolyzers. The development of highly-efficiency and durable inexpensive electrocatalysts to accelerate the kinetics of HER is still a formidable challenge. In this study, nickel–iron (Ni–Fe) electrocatalyst directly grown on backbones of Ni foam (NF) substrate was facile prepared via one-step potentiostatic electrodeposition method. The obtained Ni–Fe electrocatalyst exhibits a film-like structure. Owing to high electrical conductivity and composition optimization, the synthesized Ni–Fe electrocatalyst with Ni/Fe atomic ratio of c.a. 65:35 possesses an attractive electrocatalytic activity with low overpotentials of 142, 205, and 239 mV at 10, 50, and 100 mA·cm?2 in alkaline electrolyte, respectively.  相似文献   

2.
Ni–S–Fe alloy has been successfully fabricated on a copper foil substrate through direct-current electrodeposition as an electrocatalyst for hydrogen evolution reaction (HER) in alkaline solution. The Ni–S–Fe alloy is characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The electrocatalytic performance of Ni–S–Fe alloy for HER is studied in 30 wt% KOH solution. The results show that the Ni–S–Fe alloy exhibits much higher catalytic activity for HER relative to Ni–S alloy, as manifested by smaller overpotential of 222 mV at 10 mA cm?2 and higher exchange current density of 1.60 × 10?2 mA cm?2. The Tafel slope of 84.5 mV·dec?1 implies an underlying Volmer-Heyrovsky mechanism. The outstanding catalytic performance of the Ni–S–Fe alloy may originate from the synergistic effects of Ni and Fe, refined grain, and enlarged surface area of Ni–S–Fe alloy upon Fe doping. In addition, the Ni–S–Fe alloy has better anti-corrosion property than Ni–S alloy as a result of the poorer crystallinity of Ni–S–Fe alloy.  相似文献   

3.
Herein, a Ni–Fe–Sn coating was synthesized in-situ on Ni mesh by one-step electrodeposition at different durations. The Ni–Fe–Sn60 electrode obtained after 1 h deposition exhibits cauliflower-like morphology and the best electrocatalytic properties for the hydrogen evolution reaction (HER) compared to other electrodes. The electrode requires an overpotential of 43 mV at a current density of 10 mA cm−2 and a small Tafel slope of 70 mV dec−1 in a 1 M KOH solution. Moreover, the electrode shows outstanding stability in prolonged electrolysis and overall water splitting performance, generating a current density of 93 mA cm−2 at 1.8 V, which is thrice that of an industry electrode. This electrocatalytic activity is ascribed to the high active surface area produced by the cauliflower-like Ni–Fe–Sn particles and the synergistic interaction of Ni, Fe and Sn. The simple synthesis method and excellent performance endow this electrode with great potential for large-scale applications.  相似文献   

4.
It is very important to develop hydrogen evolution catalyst with high activity and low cost to solve energy crisis. The abundant non-precious metals and phosphides have attracted much attention and are expected to replace platinum catalysts. Herein, we report an approach to prepare nest-like porous MnCo–P electrocatalyst on the nickel foam by two-step electrodeposition. The prepared bimetallic phosphide MnCo–P3/NF has excellent hydrogen catalytic activity. In the 1 M NaOH solution, the current density of 10 mA cm?2 required overpotential is only 47 mV, its Tafel slope is 56.4 mV dec?1, and the higher current density 100 mA cm?2 required overpotential is only 112 mV. More importantly, the MnCo–P3/NF catalyst has a long-term stability of electrocatalytic hydrogen evolution. After 24 h catalytic hydrogen evolution test at a constant current density of 20 mA cm?2, its potential basically does not change. Furthermore, the current density only changes slightly after 1500 cycles of CV test. All these well prove that the prepared MnCo–P3/NF catalyst has a long-term hydrogen evolution stability. According to performance testing and morphological characterization, the MnCo–P3/NF has a high hydrogen catalytic activity and stability are due to its larger active area, lower interface charge transfer resistance and stronger mechanical stability. In summary, the study explores a method of preparing bimetallic phosphides as an efficient and stable hydrogen evolution catalyst.  相似文献   

5.
The exploration of non-precious metal catalysts has always been a hot topic. Here, a new type of Ni–La-Nd-Y film was electrodeposited on nickel foam (NF). The Ni–La-Nd-Y film shows outstanding HER activity and stability under alkaline conditions. La2NiO4 makes the electrode surface present a regular layered structure, which greatly increases the number of electrochemically active sites. Ni–La-Nd-Y only needs 46 mV overpotential driving current density of 10  mA cm?2 in 1MKOH solution, which is very close to the HER performance of metal Pt. By doping rare earth elements and taking advantage of the shrinkage characteristics of lanthanides, this work took advantage of the shrinkage characteristics of the lanthanide series and found new ideas for improving catalysts through the combination of different rare earth elements.  相似文献   

6.
Designing the efficient, low-cost and stable electrocatalyst is of great significance for storage and conversion of the renewable energy to hydrogen. Herein, the binder-free Ni–Fe–S electrocatalysts were directly electrodeposited on Ni foam, which exhibited the excellent hydrogen evolution reaction performance with the overpotential of 51.4 mV at the current density of 10 mA cm?2. Based on the analysis and results of as-synthesized Ni, Ni–Fe and Ni–S, the boosted electrocatalytic activity can be attributed to the composite effect between Ni and the introduced Fe and S. Additionally, the Ni–Fe–S electrocatalysts also displayed the low cell voltage (1.59 V at 10 mA cm?2), remarkable durability and high Faraday efficiency in overall water electrocatalysis. Moreover, the water electrolysis device with Ni–Fe–S bi-electrodes can be driven by a small wind power generation and producing 4 mL H2 in 39 min, indicating the prepared Ni–Fe–S electrocatalyst has the great potentials in producing hydrogen via renewable energy.  相似文献   

7.
Ni–Fe–Sn electrocatalyst supported on nickel foam (Ni–Fe–Sn/NF) with high efficiency of hydrogen evolution reaction (HER) has been successfully fabricated through one-step potentiostatic electrodeposition route. The optimized Ni–Fe–Sn/NF displayed an extremely low overpotential of, respectively, 144 and 180 mV at 50 and 100 mA cm?2 for HER in alkaline condition. Moreover, it could retain its superior stability for at least 12 h. The remarkable electrocatalytic activity of our electrocatalyst is ascribed to the high conductivity originated from synergistic effects between Ni, Fe, and Sn during HER process.  相似文献   

8.
Designing cost-effective and high-efficiency non-noble electrocatalysts for the hydrogen evolution reaction (HER) remains a significant challenge for electrochemical water splitting to store clean and renewable energy. Herein, we have developed Ni–Fe–Sn electrocatalysts grown on Ni foam (Ni–Fe–Sn@NF) for the HER through a simple and facile synthetic route of cyclic voltammetry electrodeposition. The optimized Ni–Fe–Sn electrocatalysts possess excellent electrocatalysis toward hydrogen evolution with a low overpotential of 103 mV at a current density of 10 mA cm−2, together with a small Tafel slope value of 97.4 mV·dec−1 in 1 M KOH. The electrocatalyst also features excellent stability even after 2000 cycles and strong durability after 50 h under alkaline condition. The high HER performance can be attributed to the moderately optimized electronic structure of the Ni, Fe, and Sn center and bind-free nature of the electrode, which facilitates electron transfer and speeds up reaction kinetics. Moreover, the improved electrochemical surface area also enhances the performance on hydrogen production. This strategy presents a facile and simple tactic for the synthesis of noble-metal-free electrocatalysts with excellent HER performance.  相似文献   

9.
The development of highly efficient and superior durability electrocatalysts is vital to expedite hydrogen evolution reaction (HER). Herein, a mixed amorphous and nano-crystalline Ni–Co–Fe–P alloy on Ni foam after 75 s dealloying in 3 M HCl (Ni–Co–Fe–P/NF-3-75) is synthesized by the preparation strategy of two-step method consisting of electroless deposition and dealloying process. Ni–Co–Fe–P/NF-3-75 shows an excellent HER performance and high durability in both alkaline and neutral conditions by optimizing the composition of the catalysts, acid concentration, and the time of dealloying. Benefitting from the high conductivity of Ni foam carrier, coordination between polymetallic phases, and the large exposure of defects, the as-prepared Ni–Co–Fe–P/NF-3-75 requires only a low overpotential of 56 mV and 104 mV to reach the current density of 10 mA cm−2 in 1.0 M KOH and 1.0 M phosphate buffer (PBS), respectively. Remarkably, the Ni–Co–Fe–P/NF-3-75 electrode exhibits superior cycling stability and long-term robust durability without obvious overpotential decline. The successful preparation of the Ni–Co–Fe–P/NF-3-75 catalyst indicates that this method provides an efficient way to synthesize polymetallic phosphides for hydrogen evolution reaction.  相似文献   

10.
Molybdenum diselenide (MoSe2) is a potential catalytic material for the electrocatalytic hydrogen evolution reaction (HER). However, due to the low density of its active sites, MoSe2 nanosheets feature high overpotential in HER, which limits its practical application. This describes the method of doping the Ni in MoSe2 nanosheets to increase active sites. The NiO2 evenly dispersed on MoSe2 by ethanol solution reduces to ~4 nm Ni nanoclusters under annealing process, which is firmly adhered to MoSe2 nanosheets with Ni–Se bond. The electrochemical active surface area of Ni-doped MoSe2 expands, proving that Ni dopants produce more activity sites in MoSe2 nanosheets. The overpotential of MoSe2 (at 10 mA cm−2) decreases from 335 mV to 181 mV with 4.5 at.% Ni doped in 1 M KOH. The Ni–MoSe2 also characterizes excellent stability for 12 h with the formation of Ni–Se bond. The study of doping Ni in MoSe2 nanosheets is of great guiding significance to the design and production of non-noble electrocatalysts for HER in alkaline media.  相似文献   

11.
In this study, different Ni–W coatings, obtained by cheap and technologically simple electrodeposition method, were examined as potential electrocatalysts for the hydrogen evolution reaction (HER). All electrodepositions were done on a Ni mesh substrate from ammoniacal-citrate bath containing different concentrations of Na2WO4. The influence of deposition parameters, such as deposition current density, pH and composition of ammoniacal-citrate bath on electrocatalytic activity of obtained Ni–W coatings toward HER was examined by polarization curve measurements in 6 M KOH at room temperature. The morphology and tungsten content of the Ni–W coatings were investigated by means of SEM and EDS analysis. All investigated electrodes have shown high electrocatalytic activity for the HER. The samples obtained at higher deposition current densities had the lowest overvoltage for the HER. It has been shown that the plating bath pH value is very important parameter in obtaining active coatings. Results of the analysis of polarization curves, morphology of deposited Ni–W coatings and the content of tungsten in the coatings, indicate that the surface roughness of the coatings is responsible for their catalytic activity towards HER.  相似文献   

12.
Alkaline solution is considered to be more suitable for industrial application of hydrogen production by water electrolysis. However, most of the low-cost electrocatalyts such as Ni3S2 has poor ability to dissociate HO–H, resulting in unsatisfied hydrogen evolution performance in alkaline media. In this paper, a novel vermicular structure of Ni3S2–Ni(OH)2 hybrid have been successfully prepared on nickel foam substrate (v-Ni3S2–Ni(OH)2/NF) through a facile two-step containing hydrothermal and electrodeposition processes. The heterostructure consists of rod-like Ni3S2 and Ni(OH)2 nanosheets, in which Ni(OH)2 is coated on the surface of Ni3S2. This structure not only constructs a fast electron transfer channel but also possesses rich heterointerface, thus accelerating the Volmer step and allowing more active sites of Ni3S2 to functioning well. As a result, v-Ni3S2–Ni(OH)2/NF exhibited excellent electrocatalytic activity toward HER in 1.0 M KOH solution. It only needs 78 mV and 137 mV to drive current density of 10 mA cm−2 and 100 mA cm−2. Moreover, the catalytic stability of this electrocatalyst in alkaline solution is also satisfactory.  相似文献   

13.
Synthesis conditions are among the most influential factors in the electrocatalytic properties of the samples studied for the hydrogen evolution reaction (HER). In this study, conditions of NiSe synthesis over a Mo–Ni–Se layer were optimized to create core-shell nanostructures with excellent electrocatalytic properties. To optimize the synthesis conditions, first, two electrodeposition techniques in constant potential and pulse potential conditions were investigated and then the optimal temperature for electrodeposition between 5, 25, 40, and 60 °C was found. The electrocatalytic activity of the synthesized samples was investigated using linear sweep voltammetry (LSV), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronopotentiometry tests in a 1 M KOH solution. Preliminary results showed that pulsed electrodeposition of NiSe could improve the electrocatalytic activity of Mo–Ni–Se by forming durable and suitable nanostructures, while electrodeposited NiSe at constant potential could reduce the electrocatalytic activity of the electrode by forming a dense structure. Then, to determine the appropriate temperature, electrodeposition at the optimal pulse potential at four temperatures of 5, 25, 40, and 60 °C was used to synthesize NiSe on Mo–Ni–Se. The final results showed that the sample synthesized at 60 °C with an electrochemically active surface area of 2870 cm2 had the highest hydrogen production sites and required only an overpotential of 77 mV to achieve a current density of 10 mA cm?2.  相似文献   

14.
We report the enhancement in electrocatalytic activity of Mn–O–Co composite electrode developed through chemical reduction method. The Mn–O–Co composite electrode exhibits high catalytic activity with a low Tafel slope of 123 mV dec−1 and a low overpotential of 117 mV at a current density of 10 mA cm−2. The enhancement in electrocatalytic activity of Mn–O–Co composite electrode is due to the synergistic activity of MnO and CoO with the NiP matrix. The intermetallic interaction among the half-filled orbitals of manganese with the fully occupied orbitals of cobalt and nickel leads to an effective electron delocalization in the catalytic system which enhances the HER performance of the coating. The Cdl value of the composite electrode is in the order of 254 μF, which is approximately ten fold higher than the bare NiP coating, due to the enhancement in interaction between the Mn–O–Co composite electrode and the reactive species in the HER medium. The Mn–O–Co composite electrode shows promising characteristics as an electrocatalyst with long term stability and remarkable competency with the commercially available electrodes.  相似文献   

15.
The design and manufacture of effective non-noble metal catalysts for the H2 evolution reaction (HER) are urgent for realizing a cost-effective hydrogen production. We report herein on flower-like structures consisting of NiCoP–CoP heterostructural nanowires grown directly on the hierarchically porous nickel framework (NiCoP–CoP/Ni/NF) to achieve a highly efficient HER in alkaline solution (1.0 M KOH). The NiCoP–CoP/Ni/NF is synthesized by electrodeposition of porous Ni layers on Ni foam, followed by simple hydrothermal reaction and phosphorization. For HER, the binder-free NiCoP–CoP/Ni/NF electrode can reach 10 mA cm?2 current density at a quite low overpotential of 49 mV, because of the combination of porous Ni layers and highly active NiCoP–CoP nanowires. In addition, the NiCoP/CoP heterostructures exhibited remarkable stability under the long-term durability test. This work provides a new strategy that combines electrodeposition and hydrothermal reaction to synthesize effective HER catalysts.  相似文献   

16.
Ni–Co alloy nanostructured electrodes with high surface area were investigated both as a cathode and anode for an alkaline electrolyzer. Electrodes were obtained by template electrosynthesis at room temperature. The electrolyte composition was tuned in order to obtain different NiCo alloys. The chemical and morphological features of nanostructured electrodes were evaluated by EDS, XRD and SEM analyses. Results show that electrodes with different composition of Ni and Co, made of nanowires well anchored to the substrate, were obtained. For both hydrogen and oxygen evolution reactions, electrochemical and electrocatalytic tests, performed in 30% w/w KOH aqueous solution, were carried out to establishing the best alloy composition. Mid-term tests conducted at a constant current density were also reported. Nanostructured electrodes with a Co atomic composition of 94.73% have the best performances for both hydrogen and oxygen evolution reactions. In particular, with this alloy, a potential of ?0.43 V (RHE) and of 1.615 V (RHE) was measured for hydrogen and oxygen evolution reaction at ?50 mA cm?2 and at 50 mA cm?2, respectively, after 6 h of electrolysis. The calculated Tafel's slopes for HER and OER were ?0.105 and 0.088 V/dec, respectively. Furthermore, HER and OER η10 potential values were measured founding ?0.231 V (RHE) and 1.494 V (RHE) respectively.  相似文献   

17.
Electro active Ni–Mo electrodes have been prepared by mechanical alloying and pressure-less sintering (1173K) Ni and Mo powders. The electrochemical performance of obtained electrodes has been evaluated in KOH 30% at 343K as a function of the milling time, applied pressure for green compaction as well as the effect conferred by the addition of a process control agent (PCA). Cathodic slope of the best specimen is 279mV/dec. Faster reaction kinetics is observed for the specimens treated with PCA addition. The longer milling time and applied pressure on the specimens the better cathodic response. The activation overpotential, i.e. cathodic-Tafel slopes found at high overvoltages are in the range of 274–481mV/dec, whereas the exchange current density for the hydrogen evolution reaction ranged from 27.3 to 1.4mA/cm2.  相似文献   

18.
Hydrogen evolution reaction (HER) on the Ni–Fe–C electrodes electrodeposited at current density ranging from 100 to 300 A/m2, as well as their electrochemical properties in 3.5% NaCl solution at 90 °C and pH = 12, had been investigated by polarization measurements, EIS technique. It was shown that the carbon content and grain size of Ni–Fe–C coatings are affected by current density. In addition, the hydrogen evolution overpotential of Ni–Fe–C electrodes was related with carbon content and grain size. The Ni–Fe–C electrodes with optimum catalytic activity for the HER were found to contain the maximum carbon content 1.59% and the minimum grain size 3.4 nm. The results of a comparative analysis between carbon content and intrinsic activity are that carbon content plays an important role in intrinsic activity of Ni–Fe–C electrodes.  相似文献   

19.
The development of self-supporting electrodes that exhibited both high efficiency and good durability remained a challenge in the field of hydrogen energy utilisation. Here, we designed a self-supporting 3D hierarchical porous electrode by filling carbon nanotubes (CNTs) loaded with Ni–P alloy into the framework of nickel foam (NF). Firstly, CNTs were decorated with a catalytically active Ni–P alloy via electroless plating (Ni–P@CNTs). Then, the Ni–P@CNTs were filled and anchored onto the framework of NF via electroplating to synthesise a self-supporting electrode (Ni–P@CNTs/NF). The Ni–P@CNTs/NF exhibited an excellent catalytic performance toward the hydrogen evolution reaction (HER) in 1 M KOH electrolyte, with an overpotential of 53 mV at 10 mA cm?2, a small Tafel slope of 101.56 mV dec?1 and excellent long-term durability. This facile and effective strategy might provide a new path to the design of self-supporting electrodes with enhanced HER catalytic.  相似文献   

20.
The hydrogen evolution reaction (HER) electrocatalytic activities normalized to electrochemically active surface area (ECSA) were systematically evaluated and correlated with its composition (i.e., Mo content up to 26 at. %), crystal structure (i.e., face-centered cubic (fcc) to orthorhombic phase and the mixed phases with different phase ratios), and crystallinity. The electrodeposited with mixed phases exhibited highest ECSA (up to 228 cm2 per 1 cm2 geometric surface area) compared to deposits with single phase, which serves as the dominant factor to enhance exchange current density and overpotential. Low overpotentials per ECSA were observed with Mo content of 5.16 at% (fcc) and 24.1 at% (mixed phases). After normalizing with ESCA, The Tafel slope and exchange current density were indifference with Mo content, crystal phase, and grain size. The metallic Ni–Mo thin films have low mixed potential and overpotential at 10 mA/cm2 of 20 mV and 120 mV, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号