首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The use of metallic nanoparticles in engineering and biomedicine disciplines has gained considerable attention. Scientists are exploring new synthesis protocols of these substances considering their small size and lucrative antimicrobial potential. Among the most economical techniques of synthesis of metallic nanoparticles via chemical routes, which includes the use of chemicals as metal reducing agents, is considered to generate nanoparticles possessing toxicity and biological risk. This limitation of chemically synthesized nanoparticles has engendered the exploration for the ecofriendly synthesis process. Biological or green synthesis approaches have emerged as an effective solution to address the limitations of conventionally synthesized nanoparticles. Nanoparticles synthesized via biological entities obtained from plant extracts exhibit superior effect in comparison to chemical methods. Recently, conifer extracts have been found to be effective in synthesizing metallic nanoparticles through a highly regulated process. The current review highlights the importance of conifers and its extracts in synthesis of metallic nanoparticles. It also discusses the different applications of the conifer extract mediated metallic nanoparticles.  相似文献   

2.
关桦楠 《精细化工》2021,38(3):474-482,553
传统合成金纳米粒子(AuNPs)的方法主要分为物理法和化学法.物理法合成效率低且合成的AuNPs的分散性差,使其在生物医学领域的应用大大受限;而化学法能耗大、运行成本高,使用会对人体健康和生态系统造成危害的化学试剂.为克服以上缺点,实现AuNPs合成的可持续路线,绿色化学合成法已成为该领域的研究热点.简要总结了AuNPs绿色合成技术的优点,重点介绍了近年来以植物源材料、藻类、真菌及其产物、细菌及其产物等天然试剂为原材料的AuNPs绿色合成的研究进展,剖析了AuNPs绿色制备方法未来将面临的挑战,并对该方法的应用前景进行了展望.  相似文献   

3.
In recent years, there has been an increasing interest in the development of plant-based nanoparticles due to their numerous benefits over conventional physio-chemical methods, including sustainability and environmental safety. Green synthesis, a process that produces safe and sustainable goods without the use of harsh chemicals or other harmful processes, is gaining popularity. The current study focuses on the green synthesis of copper oxide nanoparticles using Piper nigrum leaf extracts, their characterization, and applications. The synthesis of nanoparticles was confirmed by changes in colour, further endorsed by UV–visible spectroscopy. Copper oxide (CuO) nanoparticles were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). CuO nanoparticle sizes ranged between 58.23 and 69.89 nm and were spherical in shape. FTIR results indicated a functional group capped on the nanoparticle surface. The antibacterial activity of the copper oxide nanoparticles was tested, and they exhibited the significant decrease in bacterial concentration and the largest zone of inhibition, making them an efficient disinfectant. Antimicrobial activity against Bacillus subtilis and Escherichia coli was observed. Furthermore, the synthesized CuO nanoparticles exhibited a high affinity for safranin dyes and demonstrated maximum removal efficiency. This makes them an effective agent for removing dyes in wastewater from industries such as clothing manufacturing. Safranin dye was successfully removed with an efficiency of 78% using nanoparticles. In conclusion, the green synthesis of copper oxide nanoparticles using plant extracts presents an eco-friendly and sustainable approach for producing nanoparticles with a wide range of potential applications.  相似文献   

4.
Among the various types of nanoparticles and their strategy for synthesis, the green synthesis of silver nanoparticles has gained much attention in the biomedical, cellular imaging, cosmetics, drug delivery, food, and agrochemical industries due to their unique physicochemical and biological properties. The green synthesis strategies incorporate the use of plant extracts, living organisms, or biomolecules as bioreducing and biocapping agents, also known as bionanofactories for the synthesis of nanoparticles. The use of green chemistry is ecofriendly, biocompatible, nontoxic, and cost-effective. We shed light on the recent advances in green synthesis and physicochemical properties of green silver nanoparticles by considering the outcomes from recent studies applying SEM, TEM, AFM, UV/Vis spectrophotometry, FTIR, and XRD techniques. Furthermore, we cover the antibacterial, antifungal, and antiparasitic activities of silver nanoparticles.  相似文献   

5.
Nanoparticle research has become increasingly important in the context of bioscience and biotechnology. Practical use of nanoparticles in biology has significantly advanced our understanding about biological processes in the nanoscale as well as led to many novel diagnostic and therapeutic applications. Besides, synthetic and natural nanoparticles are of concern for their potential adverse effect on human health. Development of novel detection and characterization tools for nanoparticles will impact a broad range of disciplines in biological research from nanomedicine to nanotoxicology. In this article, we discuss the recent progress and future directions in the area of single nanoparticle detectors with an emphasis on their biological applications. A brief critical overview of electrical and mechanical detection techniques is given and a more in-depth discussion of label-free optical detection techniques is presented.  相似文献   

6.
Numerous luminophores may be encapsulated into silica nanoparticles (< 100 nm) using the reverse microemulsion process. Nevertheless, the behaviour and effect of such luminescent molecules appear to have been much less studied and may possibly prevent the encapsulation process from occurring. Such nanospheres represent attractive nanoplatforms for the development of biotargeted biocompatible luminescent tracers. Physical and chemical properties of the encapsulated molecules may be affected by the nanomatrix. This study examines the synthesis of different types of dispersed silica nanoparticles, the ability of the selected luminophores towards incorporation into the silica matrix of those nanoobjects as well as the photophysical properties of the produced dye-doped silica nanoparticles. The nanoparticles present mean diameters between 40 and 60 nm as shown by TEM analysis. Mainly, the photophysical characteristics of the dyes are retained upon their encapsulation into the silica matrix, leading to fluorescent silica nanoparticles. This feature article surveys recent research progress on the fabrication strategies of these dye-doped silica nanoparticles.  相似文献   

7.
Nanotechnology is an exciting and powerful discipline of science; the altered properties of which have offered many new and profitable products and applications. Agriculture, food and medicine sector industries have been investing more in nanotechnology research. Plants or their extracts provide a biological synthesis route of several metallic nanoparticles which is more eco-friendly and allows a controlled synthesis with well-defined size and shape. The rapid drug delivery in the presence of a carrier is a recent development to treat patients with nanoparticles of certain metals. The engineered nanoparticles are more useful in increasing the crop production, although this issue is still in infancy. This is simply due to the unprecedented and unforeseen health hazard and environmental concern. The well-known metal ions such as zinc, iron and copper are essential constituents of several enzymes found in the human system even though the indiscriminate use of similar other metal nanoparticle in food and medicine without clinical trial is not advisable. This review is intended to describe the novel phytosynthesis of metal and metal oxide nanoparticles with regard to their shape, size, structure and diverse application in almost all fields of medicine, agriculture and technology. We have also emphasized the concept and controversial mechanism of green synthesis of nanoparticles.  相似文献   

8.
Magnetic nanoparticles that are superparamagnetic with high saturation moment have great potential for biomedical applications. Solution‐phase syntheses have recently been applied to make various kinds of monodisperse magnetic nanoparticles with standard deviation in diameter of less than 10%. However, the surface of these nanoparticles is coated with a layer of hydrocarbon molecules due to the use of lipid‐like carboxylic acid and amine in the syntheses. Surface functionalization leads to the formation of water‐soluble nanoparticles that can be further modified with various biomolecules. Such functionalization has brought about several series of monodisperse magnetic nanoparticle systems that have shown promising applications in protein or DNA separation, detection and magnetic resonance imaging contrast enhancement. The goal of this mini review is to summarize the recent progress in the synthesis and surface modification of monodisperse magnetic nanoparticles and their applications in biomedicine. Copyright © 2007 Society of Chemical Industry  相似文献   

9.
10.
The major issue of consumable water shortage in different parts of the world has piqued the interest of researchers around the globe towards finding out novel, efficient and cost-effective means and techniques for treatment of contaminated water. Towards such efforts, researchers are experimenting with various types of nanoparticles for observing their abilities to treat polluted and/or wastewater. Numerous types of nanoparticles such as carbon-based nanoparticles, semiconductor nanoparticles, ceramic nanoparticles, polymeric nanoparticles, metal nanoparticles, magnetic nanoparticles, etc. are widely tested to confirm their applicability as potential candidates for contaminated as well as wastewater treatment. Different types of nanoparticles offer specific advantages depending on their composition, physical, chemical, electrical, magnetic and structural characteristics. Nanoparticles such as nanoferrites are reported to be easily separated, regenerated and reused up to several runs without incurring any loss in their properties which tend to significantly reduce operations costs. The present study provides a detailed review of the various synthesis and characterization techniques for the production of the nanoparticles. The present study also reviews the current progress, made particularly during the last two decades, in the application of nanoparticles for successful removal of organic, metallic as well as pathogenic pollutants from the water. This review aims to highlight the unlimited potential of nanoparticles and their derivatives in the domain of contaminated and wastewater treatment.  相似文献   

11.
水热法制备纳米分散颗粒和晶须材料进展   总被引:1,自引:1,他引:0       下载免费PDF全文
向兰  王靖 《化工学报》2014,65(7):2638-2644
纳米分散颗粒和一维晶须材料性能优越、用途广泛,是近年研究热点。液相法尤其是水热法因具有过程简单和能耗低等特点而被广泛用于制备纳米材料。首先介绍了近年来水热技术在纳米分散颗粒制备中的进展,包括超临界水热法、连续水热法以及水热改性法,并分析了其实现纳米颗粒粒径及分散性控制的原理。然后介绍了两种水热制备晶须材料的新思路,包括水热重结晶法和离子诱导-结构重整法,阐述了其实现晶须定向生长的机制。  相似文献   

12.
Boron-containing organic compounds have found widespread use in synthetic organic chemistry. More recently, boronic acid-containing polymers have proven valuable in a variety of biomedical applications, including the treatment of HIV, obesity, diabetes, and cancer. However, as compared to many other classes of functional polymers, boronic acid-containing (co)polymers remain underutilized, despite their unique reactivity, solubility, and responsive nature. This Feature Article highlights research in this area, with particular focus on recent developments in synthesis, processing, and materials development that have enabled the preparation of new biomaterials. In addition to providing an overview to the current state of the art, we emphasize the versatility of boronic acid polymers and suggest routes for their further employment in other potential biomedical applications.  相似文献   

13.
生物质炭材料因独特的孔道结构与优良的吸附性能引起广泛关注,如何有效提升其吸附效率并与水相快速分离仍是极具挑战的问题.综述了木质纤维素生物质磁性炭复合材料的制备方法,对比分析了致孔方法、浸渍比率、炭化温度、炭化时间、炭化方式等因素对其孔道结构的影响,进而介绍了其在水处理领域的应用研究、吸附机制及重复利用情况,最后针对木质...  相似文献   

14.
Cardiovascular diseases (CVDs) are the leading causes of morbidity and mortality worldwide. However, despite the recent developments in the management of CVDs, the early and long outcomes vary considerably in patients, especially with the current challenges facing the detection and treatment of CVDs. This disparity is due to a lack of advanced diagnostic tools and targeted therapies, requiring innovative and alternative methods. Nanotechnology offers the opportunity to use nanomaterials in improving health and controlling diseases. Notably, nanotechnologies have recognized potential applicability in managing chronic diseases in the past few years, especially cancer and CVDs. Of particular interest is the use of nanoparticles as drug carriers to increase the pharmaco-efficacy and safety of conventional therapies. Different strategies have been proposed to use nanoparticles as drug carriers in CVDs; however, controversies regarding the selection of nanomaterials and nanoformulation are slowing their clinical translation. Therefore, this review focuses on nanotechnology for drug delivery and the application of nanomedicine in CVDs.  相似文献   

15.
生物质炭材料因独特的孔道结构与优良的吸附性能引起广泛关注,如何有效提升其吸附效率并与水相快速分离仍是极具挑战的问题。该文从磁性纳米颗粒的合成方法出发,综述了木质纤维素生物质磁性炭复合材料的制备方法,对比分析了致孔方法、浸渍比率、炭化温度、炭化时间、炭化方式等因素对其孔道结构的影响,进而介绍了其在水处理领域的应用研究、吸附机制及重复利用情况,最后针对木质纤维素生物质磁性炭材料现阶段所面临的挑战,提出今后的研究重点与方向。  相似文献   

16.
《Ceramics International》2022,48(7):8882-8913
The development of particulate materials is accelerating at a tremendous speed and nanoparticles have gradually gained worldwide attention. Among them, silicon carbide (SiC) nanoparticles have attracted much attention due to their excellent performance and great application potential. This article mainly presents a comprehensive overview on the synthesis, properties and potential applications of SiC nanoparticles. Firstly, various synthesis techniques for SiC nanoparticles were discussed, with the classification of solid phase, liquid phase and vapor phase processes. Subsequently, the unique properties of SiC nanoparticles such as surface properties, thermal properties, electrical properties and biocompatibility properties were highlighted. Thereafter, diversified applications of SiC nanoparticles including composites, catalysts, fluorescent biological labels, bioadhesives and flexible field emitters have been discussed. Finally, contents of the article were summarized and outlooks of future research were stated.  相似文献   

17.
Zahmakıran M  Ozkar S 《Nanoscale》2011,3(9):3462-3481
Metal nanoparticles have attracted much attention over the last decade owing to their unique properties, different to their bulk counterparts, which pave the way for their application in different fields from materials science and engineering to biomedical applications. Of particular interest, the use of metal nanoparticles in catalysis has brought superior efficiency in terms of activity, selectivity and lifetime to heterogeneous catalysis. This article reviews the recent developments in the synthesis routes and the catalytic performance of metal nanoparticles depending on the solvent used for various organic and inorganic transformations. Additionally, we also discuss the prevalent complications and their possible solutions plus future prospects in the field of nanocatalysis.  相似文献   

18.
We would like to introduce bionanoparticles with their unique multifunctional and self-assembling properties. Particularly, protein cages like plant viruses or ferritin but also other well-defined self-assembling protein structural motifs are valuable building blocks with great potential in (bio-) nanotechnology. A steeply increasing number of research works present promising results and applications in biomedicine, diagnostics and analytics as well as nanoelectronics. However, the use of bionanoparticles for hybrid and soft protein-polymer composite materials has not received high attention yet. The article will first introduce the structural principles of well-defined protein complexes and exemplarily describe the structure of a few selected plant viruses and ferritin. Then, the recent progress in chemical or genetically programmed functionalization and the use of the modified bionanoparticles for the production of novel nanostructured (hybrid) materials will be presented. An updated overview of grafting-onto and grafting-from polymerization methods for the modification of proteins and protein complexes will be given as well. The feature closes with some exciting examples in which bio (in-) organic nanoparticles are employed in analytics, for catalysis and biomedical applications.  相似文献   

19.
Gold nanoparticles (AuNPs) are becoming increasingly popular as drug carriers due to their unique properties such as size tenability, multivalency, low toxicity and biocompatibility. AuNPs have physical features that distinguish them from bulk materials, small molecules and other nanoscale particles. Their unique combination of characteristics is just now being fully realized in various biomedical applications. In this review, we focus on the research accomplishments and new opportunities in this field, and we describe the rising developments in the use of monodisperse AuNPs for diagnostic and therapeutic applications. This study addresses the key principles and the most recent published data, focusing on monodisperse AuNP synthesis, surface modifications, and future theranostic applications. Moving forward, we also consider the possible development of functionalized monodisperse AuNPs for theranostic applications based on these efforts. We anticipate that as research advances, flexible AuNPs will become a crucial platform for medical applications.  相似文献   

20.
《Ceramics International》2023,49(20):32343-32358
The many branches of nanoscience have made significant strides and advancements during the past ten years, as has the entire scientific community. Zirconia nanoparticles have several uses as adsorbents, nanosensors, nanocatalysts, and other types of nanomaterials. Their outstanding biomedical uses in dental care and drug delivery, as well as their intriguing biological characteristics, such as their anti-cancer, anti-microbial, and antioxidant activity, have further encouraged researchers to investigate their physicochemical properties using various synthetic pathways. Due to the popularity of zirconia-based nanomaterials, the current research comprehensively examines several synthesis techniques and their effects on the composition, dimensions, forms, and morphologies of these nanomaterials. In general, there are two methods for creating zirconia nanoparticles: chemical synthesis, which uses hydrothermal, solvothermal, sol-gel, microwave, solution combustion, and co-precipitation processes; and a greener method, which uses bacteria, fungi, and plant components. The aforementioned techniques have been evaluated in the present review for achieving particular phases and shapes. A thorough analysis of zirconia-based nanomaterial's uses is also included in the review. Furthermore, comparisons with their equivalent composites for various applications as well as the influence of particular phases and morphologies have been added. The final portion includes the summary, future outlook, and potential application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号