首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Relationships between flame lift-off heights and reservoir pressure were experimentally investigated in order to clarify blow-off process of hydrogen non-premixed jet flames with a highly under-expanded jet structure. In this study, straight nozzles with diameters of 0.34, 0.53, 0.75 and 1.12 mm were used with maximum reservoir pressure for spouting hydrogen of 13.2 MPa. Experimental results are shown that lift-off heights in stable under-expanded jet flames do not vary significantly and are independent of the reservoir pressure in the range of studied pressure. However, the lifted heights are affected by the nozzle diameters and become smaller as the nozzle diameters increase. From experimental results, the condition for the blow-off process of under-expanded subsonic jet flames was proposed. It was concluded that the under-expanded jet flame could be blown off when the maximum waistline position, where radial distance from the jet axis to an elliptic stoichiometric contour reaches its maximum comes closer to the nozzle exit than the edge of the jet flame base.  相似文献   

2.
The stability characteristics of attached hydrogen (H2) and syngas (H2/CO) turbulent jet flames with coaxial air were studied experimentally. The flame stability was investigated by varying the fuel and air stream velocities. Effects of the coaxial nozzle diameter, fuel nozzle lip thickness and syngas fuel composition are addressed in detail. The detachment stability limit of the syngas single jet flame was found to decrease with increasing amount of carbon monoxide in the fuel. For jet flames with coaxial air, the critical coaxial air velocity leading to flame detachment first increases with increasing fuel jet velocity and subsequently decreases. This non-monotonic trend appears for all syngas composition herein investigated (50/50 → 100/0% H2/CO). OH chemiluminescence imaging was performed to qualitatively identify the mechanisms responsible for the flame detachment. For all fuel compositions, local extinction close to the burner rim is observed at lower fuel velocities (ascending stability limit), while local flame extinction downstream of the burner rim is observed at higher fuel velocities (descending stability limit). Extrema of the non-monotonic trends appear to be identical when the nozzle fuel velocity is normalized by the critical fuel velocity obtained for the single jet cases.  相似文献   

3.
The effect of swirl flow on pollutant emission (nitrous oxide) was studied in a non-premixed turbulent hydrogen jet with coaxial air. A swirl vane was equipped in a coaxial air feeding line and the angle of the swirl vane was varied from 30 to 90 degrees. Under a fixed global equivalence ratio of φG = 0.5, fuel jet air velocity and coaxial air velocity were varied in an attached flame region as uF = 85.7–160.2 m/s and uA = 7.4–14.4 m/s. In the present study, two mixing variables of coaxial air and swirl flow were considered: the flame residence time and global strain rate. The objective of the current study was to analyze the flame length behavior, and the characteristics of nitrous oxide emissions under a swirl flow conditions, and to suggest a new parameter for EINOx (the emission index of nitrous oxide) scaling. From the experimental results, EINOx decreased with the swirl vane angle and increased with the flame length (L). We found the scaling variables for the flame length and EINOx using the effective diameter (dF,eff) in a far-field concept. Normalized flame length (L divided by dF,eff) fitted well with the theoretical expectations. EINOx increased in proportion to the flame residence time (∼τR1/2.8) and the global strain rate (∼SG1/2.8).  相似文献   

4.
The argon power cycle is one of the most promising technologies for high efficiency and low emission hydrogen-fueled internal combustion engines. The application of coaxial injection technology in the hydrogen-fueled argon engine can improve the mixing process and the combustion performance of the H2/O2 mixture. In this study, an innovative H2–O2 coaxial injection combustion system was designed to investigate the jet flame characteristics of oxygen coaxially wrapped by hydrogen in a controllable argon thermal atmosphere. The findings of this study could provide a new perspective for designing hydrogen-fueled argon engines in the future. The influences of co-flow temperature, jet injection pressure, and excess oxygen coefficient were all determined. Observations of the flame showed a bright blue flame with a reddish glow in the far-burner region. Experimental results show that the flame length, cross-sectional area, and area/perimeter ratio first decrease with increasing jet injection pressure and subsequently increase, reaching maximum values at 0.4–0.6 MPa. When increasing the co-flow temperature from 1023 K to 1223 K, the cross-sectional area of the flame increases significantly by 61.1% at an excess oxygen coefficient of 0.4. Furthermore, the liftoff flame height shrinks when the co-flow temperature and the excess oxygen coefficient increase, while it rises along with an increasing jet injection pressure.  相似文献   

5.
Flame stabilization in attachment jet combustors is based on the existence of the high temperature recirculation zone, provided by the Coanda effect of an attachment jet. The single attachment jet in a rectangular channel is a fundamental form of this type of flow. In this paper, the detailed characteristics of turbulent flow of a single attachment jet were experimentally studied by using a 2-D LDV. The flowfield consists of a forward flow and two reverse flows. The forward one is composed of a curved and a straight section. The curved section resembles a bent turbulent free jet, and the straight part is basically a section of turbulent wall jet. A turbulent counter-gradient transport region exists at the curved section. According to the results, this kind of combustor should have a large sudden enlargement ratio and not too narrow in width. Project supported by the National Natural Science Foundation of China.  相似文献   

6.
Molecular diffusion effects in LES of a piloted methane–air (Sandia D) flame are investigated on a series of grids with progressively increased resolution. The reacting density, temperature and chemical composition are modeled based on the mixture fraction approach combined with a steady flamelet model. With a rationale to minimize interpolation uncertainties that are routinely introduced by a flamelet table look-up, quadratic splines relationships are employed to represent thermochemical variables. The role of molecular diffusivity in effecting spatial transport is studied by drawing a comparison with the turbulent diffusivity and analyzing their statistics conditioned on temperature. Statistical results demonstrate that the molecular diffusivity in the near-field almost always exceeds the turbulent diffusivity, except at low temperatures (less than 500 K). Thus, by altering the jet near-field, molecular transport plays an important role in the further downstream jet development. Molecular diffusivity continues to dominate in the centerline region throughout the flow field. Overall, the results suggest the strong necessity to represent molecular transport accurately in LES studies of turbulent reacting flows.  相似文献   

7.
基于安装有主动式预燃室及甲烷高压喷射器的定容燃烧弹开展预燃室湍流射流火焰引燃二次喷射甲烷射流的试验,研究了不同喷射点火延迟、不同喷油压力与不同第一次喷油脉宽对点火及火焰传播的影响。结果表明:其他条件不变时,当点火延迟时间ti为-30 ms时,会出现无法点燃主燃室气体的失火现象;当点火延迟时间ti增加到-10 ms时,会出现热射流先淬息随后再次着火的不稳定点火现象。将喷射点火延迟时间ti从0 ms增加到100 ms会使燃烧压力峰值从1.56 MPa增加到2.26 MPa,并使压力峰值的时刻从点火后130 ms提前到点火后50 ms,同时提高热射流及主燃室火焰传播速度,火焰传播速度从10 m/s提高到30 m/s。此外,改变高压甲烷喷射压力,由5 MPa提高到10 MPa,燃烧压力峰值从0.96 MPa升高到2.26 MPa,压力峰值出现时刻从点火后100 ms提前到点火后50 ms。主燃室火焰传播速度由5 m/s提高至30 m/s。当改变高压甲烷第一次喷射脉宽时,也会对燃烧压力峰值及压力峰值出现时刻造成影响。将第一次喷射脉宽由40 ms提高为80 ms会使燃烧压力峰值从1.87 MPa升高到2.26 MPa,并使压力峰值的出现时刻提前,但对热射流速度及主燃室内的火焰传播速度没有明显影响。  相似文献   

8.
《Combustion and Flame》2014,161(2):484-495
A modification of the well-known jet piloted burner is introduced to enable the stabilization of partially premixed flames with varying degrees of inhomogeneity in mixture fraction or equivalence ratio. A second tube is added within the pilot annulus which now surrounds two concentric pipes, one carrying fuel and the other air. The central pipe can also be recessed within the annulus upstream of the burner’s exit plane. Two flow configurations are tested: FJ which refers to fuel issuing from the central pipe while air issues from the annulus, and FA where the reverse is true. A key feature of the FJ configuration is that when the central tube is slightly recessed, the fuel partially premixes with air from the annulus inducing inhomogeneity, the extent of which depends on the recession distance.It is found that flame stability is significantly improved due to this inhomogeneity such that, for intermediate recession distances in the range 50–100 mm, and for the same air/fuel ratio, the blow-off limits for the FJ cases are more than 50% higher than those of the FA counterparts where fuel is injected in the annulus. Detailed stability limits for both the FJ and FA configurations are presented here along with measurements of velocity and mixing fields at the jet exit plane. Rayleigh scattering is used to image mixture fraction in non-reacting jets while measurements of velocity and turbulence fields are made using standard Laser Doppler Velocimetry. It is shown that, at intermediate recession distances, significant differences in the mean and rms fluctuations of the velocity and mixture fraction profiles exist between the FA and FJ cases. An indicator of stratification, extracted from the mixture fraction images at the exit plane of non-reacting jets, confirms that a high degree of inhomogeneity correlates well with improved flame stability.  相似文献   

9.
    
An experimental study of shock wave propagation and its influence on the spontaneous ignition during high-pressure hydrogen release through a tube are measured by pressure transducers and light sensors. Results show that the pressure behind a shock wave first increases, and subsequently remains near constant value with an increase of the propagation distance. That is, a certain propagation distance is required to form a stable shock wave in the tube. In the front of the tube, the minimum value of pressure behind the shock wave (Pshock) required for spontaneous ignition decreases with the increase in axial distance to the diaphragm. However, the minimum Pshock remains nearly a constant value in the rear part of the tube. Moreover, the critical values of shock Mach number (MS) for spontaneous ignition decrease with the increase in tube length. And the ignition delay time decreases with the increase of the MS. As the ignition kernel grows in size to a flame, it propagates downstream along the tube with velocity greater than the theoretical flow velocity of the hydrogen-air contact surface. The flame propagation velocity relative to tube wall increases with MS. When the self-sustained flame exits from the tube, a rapid non-premixed turbulent combustion is observed in the chamber. The combustion-wave overpressure increases with the increase of the MS.  相似文献   

10.
用二阶矩亚网格燃烧模型对美国Sandia国家实验室测量甲烷/空气射流火焰进行了大涡模拟(LES),与实验数据和用二阶矩输运方程湍流燃烧模型的雷诺平均(RANS)模拟结果进行了对比.LES得到时间平均的温度, 甲烷浓度以及温度脉动均方根值和实验值符合很好.LES时均值和RANS模拟结果接近,LES脉动均方根值优于 RANS模拟结果.LES瞬态结果显示了有燃烧时的拟序结构比无燃烧时的强,同时拟序结构强化了燃烧,湍流射流火焰呈皱折火焰面的状态.  相似文献   

11.
Tubular non-premixed flames are formed by a uniquely designed opposed tubular burner. Structural measurements of hydrocarbon flames are conducted using the laser-induced Raman scattering technique. Temperature and major species concentrations are recorded for flames produced by 30% CH4/N2 and 15% C3H8/N2 burning against air. Numerical simulations of these flames with detailed chemistry show good agreement between the measured and simulated results. By comparing the numerical results of the tubular curved flames to those of the opposed-jet planar flames, it is shown that flame curvature towards the fuel stream strongly effects the temperature (±80 K) of flames with low fuel Lewis number (15% H2/N2, Lef = 0.41). The effect of curvature on flames with high (15% C3H8/N2, Lef = 1.51) and near-unity (30% CH4/N2, Lef ≅ 1) fuel Lewis numbers is much less.  相似文献   

12.
13.
Combustion characteristics of natural gas – hydrogen hybrid fuel were investigated experimentally in a free jet turbulent diffusion flame flowing into a slow co-flowing air stream. Experiments were carried out at a constant jet exit Reynolds number of 4000 and with a wide range of NG–H2 mixture concentrations, varied from 100%NG to 50%NG-50% H2 by volume. The effect of hydrogen addition on flame stability, flame length, flame structure, exhaust species concentration and pollutant emissions was conducted. Results showed that, hydrogen addition sustains a progressive improvement in flame stability and reduction in flame length, especially for relatively high hydrogen concentrations. Hydrogen-enriched flames found to have a higher combustion temperatures and reactivity than natural gas flame. Also, it was found that hydrogen addition to natural gas is an ineffective strategy for NO and CO reduction in the studied range, while a significant reduction in the %CO2 molar concentration by about 30% was achieved.  相似文献   

14.
A critical review and rethinking of hydrogen jet flame research is carried out. Froude number only based correlations are shown to be deficient for under-expanded jet fires. The novel dimensionless flame length correlation is developed accounting for effects of Froude, Reynolds, and Mach numbers. The correlation is validated for pressures 0.1–90.0 MPa, temperatures 80–300 K, and leak diameters 0.4–51.7 mm. Three distinct jet flame regimes are identified: traditional buoyancy-controlled, momentum-dominated “plateau” for expanded jets, and momentum-dominated “slope” for under-expanded jets. The statement “calculated flame length may be obtained by substitution the concentration corresponding to the stoichiometric mixture in equation of axial concentration decay for non-reacting jet” is shown to be incorrect. The correct average value for non-premixed turbulent flames is 11% by volume of hydrogen in air (range 8%–16%) not stoichiometric 29.5%. All three conservative separation distances for jet fire are shown to be longer than separation distance for non-reacting jet.  相似文献   

15.
湍流射流火焰抬举高度的实验研究   总被引:1,自引:0,他引:1  
湍流射流燃烧作为工业燃烧室中普遍存在的燃烧方式,研究湍流射流火焰不仅能促进实际燃烧室的设计改造,更能增强对湍流燃烧理论的理解。在轴对称伴流射流燃烧器实验平台上,研究了湍流自由射流火焰抬举高度随射流速度的变化及氮气稀释和伴流速度对火焰抬举高度的影响。实验结果表明湍流自由射流燃烧火焰抬举高度随射流速度呈线性增长;随氮气稀释摩尔分数的增加其抬举高度的线性斜率增大,射流火焰吹出喷嘴的雷诺数降低,火焰更易发生抬举;同时,氮气稀释摩尔分数的增加也导致射流火焰发生吹熄时雷诺数减小,射流火焰在射流速度完全进入湍流之前发生吹熄;伴流速度小于0.3 m/s时对火焰抬举高度的影响不大,当伴流速度大于0.3 m/s时抬举高度随伴流速度的增加呈线性增长,当射流速度大于20 m/s时,伴流速度的影响降低;对比伴流与稀释对抬举高度的影响可知射流速度大于30 m/s时对伴流的敏感性大于稀释,而在射流速度小于30 m/s时对稀释更敏感。  相似文献   

16.
基于定容弹开展了高压天然气(甲烷)射流燃烧光学测试,并分别运用深度学习方法和边缘检测算法进行了图像处理。对比结果表明,由于图像中存在射流、火焰差异大的图像识别目标,边缘检测算法无法较好识别射流和火焰,该算法适合于单一目标的火焰图像处理。深度学习方法可识别射流湍流燃烧火焰轮廓,有效地获得射流湍流燃烧火焰前锋面发展位移及火焰传播速度,该方法适用于多个目标的火焰图像处理。根据深度学习图像处理结果表明:当高压甲烷射流接触预燃球形火焰时,火焰由稳定层流速度(<3 m/s)快速上升,最大火焰传播速度高达300 m/s,形成湍流火焰,火焰沿射流方向快速向前发展,火焰面积增加。随着射流和点火时间间隔的增加,最大火焰传播速度线性下降。  相似文献   

17.
甲烷/空气湍流射流扩散火焰的化学动力学模拟   总被引:1,自引:0,他引:1  
利用几率密度函数方法求解标量场及用统计矩方法求解流场相结合的手段,对甲烷/空气湍流射流扩散火焰结构进行了计算模拟,其中,考虑了从简化到详细的三种不同规模的甲烷氧化反应动力学机理.计算结果与已有的实验结果进行了比较和分析,表明该模型可以很好地预测流场变化.在预测主要组分和温度时,三种机理具有相同的效果,在预测小浓度组分时,详细机理具有更好的效果.此外,简化机理能够极大地缩短计算时间,因而在工程应用中有着巨大的潜力.  相似文献   

18.
The turbulent jet flame in a crossflow with highly preheated diluted air has been numerically investigated. The Favre-averaged Navier–Stokes equations are solved by a finite volume method of SIMPLE type that incorporates the flamelet concept coupled with the standard kε turbulence model. The NO formation is estimated by using the Eulerian particle transport equations in a postprocessing mode. For methane and propane with various conditions of inlet air temperature and oxygen concentration, the three-dimensional characteristics of the flame are successfully captured. The jet-flame trajectory is in remarkably good agreement with the existing cold-flow correlations. When the oxygen concentration is high, the maximum flame temperature becomes high and the two fuels show quite different characteristics in the downstream region. On the other hand, for low oxygen concentrations, the temperature difference between the two fuels is relatively small and remains fairly constant throughout the combustion chamber. The propane gives a higher NO formation compared to the methane especially when the oxygen concentration is high. A higher temperature, longer residence time of the combustion gases may be responsible for the higher thermal NO formation.  相似文献   

19.
    
In the present article, series of experiments were conducted to study the structure characteristics of premixed flames in turbulent rich hydrogen‐air mixtures within a constant‐volume turbulent combustion system, 7 equivalence ratios (1.2, 1.4, 1.6, 1.8, 2.0, 2.2, and 2.5), and 5 turbulent intensity (0, 0.494, 0.742, 1.080, and 1.309 m/s) were studied. With the increase of turbulent intensity, the cellularity degree was obviously enhanced for turbulence promoted the formation and the development of initial cracks by wrinkling flame‐front; furthermore, the enhanced hydrodynamic instability was also one important reason. Turbulence would change the linear growth of critical radius to equivalence ratio into nonlinear, but the variation extents had limitation. The wrinkling index of flame‐front would rise as flame expanded, and the wrinkling index on flames with similar size would be increased with the increase of turbulence once the turbulent intensity was sufficiently high. From the variations of the root mean square of related oscillation on flame‐front, it could be found that the partial amount of oscillation induced by sole turbulence was declined as flame expanded for the breakup of large eddies.  相似文献   

20.
The influence of grid turbulence on the shear layer of a jet and the premixed flames embedded in it was investigated in the present study. The velocity field of the jet was measured by using hot-wire anemometry. It was found that grid turbulence reduced turbulence intensities in the shear layer and suppressed low frequency fluctuation. Moreover, the energy contained in small-scale fluctuation was increased and turbulence became homogeneous. The results indicate that grid turbulence inhibits the formation of a large-scale coherent structure in the shear layer. Flame temperature was measured by using a compensated fine-wire thermocouple. It was found that grid turbulence reduced low frequency fluctuation of the flame fronts, increased the small-scale wrinkles and elevated the mean temperature of the flame zone. The results show that grid turbulence can enhance and stabilize premixed flames in shear flow. Translated from Journal of Engineering Thermophysics, 2006, 27(1): 159–162 [译自: 工程热物理学报]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号