首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The economic, social, and environmental aspects are important that should be notable before the selection of a method for the production of energy. Various renewable energy sources are used like hydropower, biomass, biofuel, geothermal energy, and wind energy for the production of sustainable energy that are excellent approaches to fulfill energy environmental energy demands. Renewable sources of energy give an excellent chance to extenuate the gas emission in greenhouse and reduction of global warming with the help of renewable sources of energy. The importance and utilization of the variety of renewable sources of energy are elaborated in this article. The emerging and exploring technique for the production of energy is the photocatalysis. In photocatalysis, solar spectrum is the extraneous source that is used with water to produce hydrogen energy (green energy) by the water splitting under the shower of the solar spectrum. The solar spectrum contains heat and intensity of light from which light spectrum is the abundantly used for the splitting of water. The photocatalyst is the key factor to initiate the reaction depending upon the energy band gap by absorbing the energy from the spectrum of the sun. Semiconducting materials having lower forbidden energy band gap are the basic requirements to use them as a photocatalyst for photocatalysis. Copper vanadate and their composites are the promising materials that are used as photocatalyst for the production of hydrogen energy. Copper vanadate is the focusing material that can be used as photocatalyst. It is an n‐type semiconducting material with 2 eV indirect energy band gap having monoclinic structural phase which is tuned by the doping of metals like chromium, molybdenum, and silver to reduce the grain size and energy band gap and increase the surface area and optical absorption of solar light only to enhance the photocatalytic performance towards the production of hydrogen energy by water splitting in the presence of solar light.  相似文献   

2.
Photocatalytic hydrogen production from water splitting is a promising approach to develop sustainable renewable energy resources and limits the global warming simultaneously. Despite the significant efforts have been dedicated for the synthesis of semiconductor materials, key challenge persists is lower quantum efficiency of a photocatalyst due to charge carrier recombination and inability of utilizing full spectrum of solar light irradiation. In this review, recent developments in binary semiconductor materials and their application for photocatalytic water splitting toward hydrogen production are systematically discoursed. In the main stream, fundamentals and thermodynamic for photocatalytic water splitting and selection of photo-catalysts has been presented. Developments in the binary photocatalysts and their efficiency enhancements though surface sensitization, surface plasmon resonance (SPR) effect, Schoktty barrier and electrons mediation toward enhanced hydrogen production has been deliberated. Different modification approaches including band engineering, coupling of semiconductor catalysts, construction of heterojunction, Z-scheme formation and step-type photocatalytic systems are also discussed. The binary semiconductor materials such as TiO2, g-C3N4, ZnO, ZnS, Fe2O3, CdS, WO3, rGO, V2O5 and AgX (Cl, Br and I) are systematically disclosed. In addition, role of sacrificial reagents for efficient photocatalysis through reforming and hole-scavenger are elaborated. Finally, future perspectives for photocatalytic water splitting towards renewable hydrogen production have been suggested.  相似文献   

3.
Hydrogen is considered today a promising environmental friendly energy carrier for the next future, since it produces no air pollutants or greenhouse gases when it burns in air, and it possesses high energy capacity. In the last decades great attention has been devoted to hydrogen production from water splitting by photocatalysis. This technology appears very attractive thanks to the possibility to work under mild conditions producing no harmful by-products with the possibility to use renewable solar energy. Besides, it can be combined with the technology of membrane separations making the so-called photocatalytic membrane reactors (PMRs) where the chemical reaction, the recovery of the photocatalyst and the separation of products and/or intermediates simultaneously occur. In this work the basic principles of photocatalytic hydrogen generation from water splitting are reported, giving particular attention on the use of modified photocatalysts able to work under visible light irradiation. Several devices to achieve the photocatalytic hydrogen generation are presented focusing on the possibility to obtain pure hydrogen employing membrane systems and visible light irradiation. Although many efforts are still necessary to improve the performance of the process, membrane photoreactors seem to be promising for hydrogen production by overall water splitting in a cost-effective and environmentally sustainable way.  相似文献   

4.
5.
For several decades, the main body of research in photoelectrochemical (PEC) hydrogen production has centered on a small number of semiconductor materials classes, including stable but inefficient metal‐oxides, as well as some more efficient materials such as III–V compounds which suffer from high cost and poor stability. While demonstrating some limited success in meeting the rigorous PEC demands in terms of bandgap, optical absorption, band‐edge alignment, surface energetics, surface kinetics, stability, manufacturability and cost, none of the ‘traditional’ PEC semiconductors are adequate for application in water‐splitting devices with high performance (greater than 15% solar‐to‐hydrogen conversion) and long durability (greater than 200 h life). As a result, it is widely held that new semiconductor classes and configurations need to be identified and developed specifically for practical implementation of solar water‐splitting. Examples include ternary and quaternary metal‐oxide compounds, as well as non‐oxide semiconductor materials, such as silicon‐carbide and the copper‐chalcopyrites. This paper describes recent progress at the University of Hawaii to develop improved semiconductor absorbers and interfaces for solar photoelectrolysis based on polycrystalline tungsten trioxide and polycrystalline copper‐gallium‐diselenide. Specific advantages and disadvantages of both materials classes in terms of meeting long‐term PEC hydrogen production goals are detailed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Graphene oxide (GO) sheets have extremely adjustable electronic characteristics due to their distinctive 2D carbon composition, allowing comprehensive surface modifications. Photodriven water splitting uses semiconducting materials that have water-decomposition electronic structures appropriate for electron and hole injection. Photoelectrochemical (PEC) is regarded as an extremely efficient energy conversion system for the manufacturing of clean solar fuel. There have been tremendous attempts to design and create feasible unassisted PEC systems that can effectively divide water to form hydrogen gas and oxygen with only solar energy input (sunlight) necessary. In particular, in the presence of a photocatalyst modified with an appropriate cocatalyst, overall PEC water splitting can be accomplished. For the development of PEC systems, the fundamental concept of PEC water splitting and enhanced energy-conversion efficiency are essential for solar fuel manufacturing. Therefore, this review paper provides a concise summary of unassisted PEC systems with state-of-the-art advancements towards effective PEC water-splitting equipment for the sustainable future use of solar energy.  相似文献   

7.
Photocatalytic hydrogen production has been considered as one of the most promising alternatives for providing clean, sustainable, and renewable energy sources. Tremendous investigation and efforts have been devoted to increase the efficiency of the solar to energy conversion of a photocatalyst. Layered double hydroxide (LDH) received scientific attention for its excellent compositional flexibility and controllable morphology, leading to the facile incorporation of the metal species into their layered structure. The unique multi-structure and the tunability of its band gap make LDH more prominent in the field of photocatalysis. This article highlights the recent developments in the fabrication of LDH-based photocatalyst nanocomposites and the engineering approaches for augmenting their photocatalytic hydrogen production efficiency. The thermodynamics and challenges in photocatalytic water splitting are deliberated to understand the pathways to construct efficient semiconductor photocatalysis system. The efficiency enhancement of LDH-based photocatalysts are comprehensively discussed by giving special attention to the heterojunction engineering of type I, type II, p-n junction, Z-scheme, S-scheme, and R-scheme. Fabrication of the hybrid LDH nanocomposites through band gap engineering and metal loading are summarised. The architectural and morphological tuning of LDH-based composite through the construction of the novel core-shell structure and layer-by-layer nanosheets are also demonstrated. Finally, the future recommendations are outlined to provide insights for their development in the photocatalysis field.  相似文献   

8.
Recently, an increasing interest has been devoted to produce chemical energy – hydrogen (H2) by converting sustainable sunlight energy via water splitting and reforming of renewable biomass-derived organic substances. These photocatalytic processes are very promising, sustainable, economic, and environment-friendly. Herein, this article gives a concise overview of photocatalysis to produce H2 as solar fuel via two approaches: water splitting and reforming of biomass-derived organic substances. For the first approach – photocatalytic water splitting, there are two reaction types have been used, including photoelectrochemical (PEC) and photochemical (PC) cell reactions. For the second approach, biomass-derived oxygenated substrates could undergo selective photocatalytic reforming under renewable solar irradiation. Significant efforts to date have been made for photocatalysts design at the molecular level that can efficiently utilize solar energy and optimize the reaction conditions, including light irradiation, type of sacrificial reagents. Critical challenges, prospects, and the requirement to give more attention to photocatalysis for producing H2 are also highlighted.  相似文献   

9.
A novel photoelectrochemical cell (PEC) for generation of hydrogen via photocatalytic water splitting is proposed and investigated. At the heart of the PEC is a membrane electrode assembly (MEA) integrated with Degussa P25 TiO2 powder as a model photocatalyst for the photoanode and Pt catalyst powder for the dark cathode, respectively. It serves as a compact photocatalytic reactor for water splitting as well as an effective separator for the generated hydrogen and oxygen. The unique characteristic of the MEA-based PEC is that the use of co-catalyst, sacrificial reagent and supporting electrolyte in the cell is totally not required. The novel PEC can be operated without addition of water in the cathode compartment resulting in improved photo conversion efficiency. In addition, the application of a Degussa P25/BiVO4 mixed photocatalyst was found to significantly enhance the hydrogen generation. Further improvements for the MEA-based PEC utilizing solar energy are also proposed.  相似文献   

10.
The ever-increasing demand for renewable and clean energy sources has prompted the development of novel materials for photoelectrochemical (PEC) water splitting, but efficient solar to hydrogen conversion remains a big challenge. In this work, we report a bio-nanohybrid strategy in a photo-system to simultaneously enhance the charge separation and water splitting efficiency of photoanode (PA) by introducing Bacteriorhodopsin (bR), a natural proton pumping photosystem and GaN nanowall network (NWN), a direct band gap and corrosion-resistant semiconductor. The experimental study reveals that this combination of bR and GaN NWN has huge potential as a light-activated sensitizer as well as proton pumping source to achieve enhance photocurrent density in hydrogen evolution reaction (HER). Consequently, this synergistic effect in bR/GaN NWN PA gives rise to largely enhanced applied bias photon-to-current efficiency (ABPE) ~7.8% and photocurrent density (28.74 mA/cm2 at 1.0 V vs RHE). It is worth mentioning that the photocurrent density of bR/GaN NWN, to the best of our knowledge, is superior to previously reported bR-based PAs and bio-photoelectric devices reported till today for solar-to-hydrogen fuel generation.  相似文献   

11.
Water splitting for hydrogen production under light irradiation is an ideal system to provide renewable energy sources and to reduce global warming effects. Even though significant efforts have been devoted to fabricate advanced nanocomposite materials, the main challenge persists, which is lower efficiency and selectivity towards H2 evolution under solar energy. In this review, recent developments in photo-catalysts, fabrication of novel heterojunction constructions and factors influencing the photocatalytic process for dynamic H2 production have been discussed. In the mainstream, recent developments in TiO2 and g-C3N4 based photo-catalysts and their potential for H2 production are extensively studied. The improvements have been classified as strategies to improve different factors of photocatalytic water splitting such as Z-scheme systems and influence of operating parameters such as band gap, morphology, temperature, light intensity, oxygen vacancies, pH, and sacrificial reagents. Moreover, thermodynamics for selective photocatalytic H2 production are critically discussed. The advances in photo-reactors and their role to provide more light distribution and surface area contact between catalyst and light were systematically described. By applying the optimum operating parameters and new engineering approach on photoreactor, the efficiency of semiconductor photocatalysts for H2 production can be enhanced. The future research and perspectives for photocatalytic water splitting were also suggested.  相似文献   

12.
13.
Solar hydrogen production from direct photoelectrochemical (PEC) water splitting is the ultimate goal for a sustainable, renewable and clean hydrogen economy. While there are numerous studies on solving the two main photoelectrode (PE) material issues i.e. efficiency and stability, there is no standard photocell or photoreactor used in the study. The main requirement for the photocell or photoreactor is to allow maximum light to reach the PE. This paper presents an overview of the PE configurations and the possible photocell and photoreactor design for hydrogen production by PEC water splitting.  相似文献   

14.
Photocatalytic hydrogen production using solar irradiation is the best solution for existing energy crisis and ecological issues. Various efforts have been made to design a stable, proficient and visible light driven photocatalyst for hydrogen generation. It has been revealed that numerous factors e.g., surface area, morphology, band structure, charge transference and crystallinity affect the solar to hydrogen conversion ability of photocatalyst. Currently, many modification strategies including anion/cation doping, composite formation and alloy fabrication have been advised for semiconductor catalysts to harvest solar light to maximum extent. Moreover, a progression of novel engineering techniques that introduces dye sensitizers, quantum dots and co-catalysts, seems to enhance the photocatalytic efficiency for hydrogen production. In this perspective, we present a summary of various factors that can enhance the effectiveness of hydrogen generation and outline current advancement of frequently used fabricating strategies that look for greater yield of hydrogen. Lastly, emergence of surface plasmon resonance and significance of photocatalyst recycling for hydrogen generation is discussed. It is expected that this perspective will help researchers in designing an efficient photocatalyst for industrial scale hydrogen production.  相似文献   

15.
Photocatalytic water splitting into gaseous hydrogen and oxygen in the presence of semiconductor photocatalysts under a visible spectrum of solar irradiation is one of the most promising processes for plummeting energy demands and environmental pollution. Among the successful photocatalytic materials, the core/shell nanostructures show promising results owing to their fascinating morphology that protects the surface features of the core besides the effective separation of photo-excitons resulting in an enhanced rate of hydrogen production up to 162 mmol h−1g−1cat, which is a notable highest value reported in the literature. In this review, we have focused on the basic characteristics of the core-shell structure-based semiconductor photocatalytic systems and their efficient water-splitting reactions under light irradiation. Comprehensive detail on various synthesis methods of core-shell nanostructures, shell thickness-dependent properties, charge-transfer reaction mechanisms, and photocatalytic stability are highlighted in this review. Core-shell nanostructured materials have been extensively used as a photocatalyst, co-catalyst, and by coupling with supporting materials to improve the apparent quantum efficiency up to 45.6%. Besides, important photocatalytic properties that influence the redox reactions i.e., effective exciton separation, the effect of different light sources/wavelengths, surface charge modeling, photocatalytic active sites, and turnover frequency (TOF) have also been focused on and extensively described. Finally, the present and future prospects of the core-shell nanostructured photocatalysts for solar energy conversion into green hydrogen production have been expounded.  相似文献   

16.
Hong Kong is highly vulnerable to energy and economic security due to the heavy dependence on imported fossil fuels. The combustion of fossil fuels also causes serious environmental pollution. Therefore, it is important to explore the opportunities for clean renewable energy for long-term energy supply. Hong Kong has the potential to develop clean renewable hydrogen energy to improve the environmental performance. This paper reviews the recent development of hydrogen production technologies, followed by an overview of the renewable energy sources and a discussion about potential applications for renewable hydrogen production in Hong Kong. The results show that although renewable energy resources cannot entirely satisfy the energy demand in Hong Kong, solar energy, wind power, and biomass are available renewable sources for significant hydrogen production. A system consisting of wind turbines and photovoltaic (PV) panels coupled with electrolyzers is a promising design to produce hydrogen. Biomass, especially organic waste, offers an economical, environmental-friendly way for renewable hydrogen production. The achievable hydrogen energy output would be as much as 40% of the total energy consumption in transportation.  相似文献   

17.
Due to varied global challenges, potential energy solutions are needed to reduce environmental impact and improve sustainability. Many of the renewable energy resources are of limited applicability due to their reliability, quality, quantity, and density. Thus, the need remains for additional sustainable and reliable energy sources that are sufficient for large-scale energy supply to complement and/or back up renewable energy sources. Nuclear energy has the potential to contribute a significant share of energy supply with very limited impacts to global climate change. Hydrogen production via thermochemical water decomposition is a potential process for direct utilization of nuclear thermal energy. Nuclear hydrogen and power systems can complement renewable energy sources by enabling them to meet a larger extent of global energy demand by providing energy when the wind does not blow, the sun does not shine, and geothermal and hydropower energies are not available. Thermochemical water splitting with a copper–chlorine (Cu–Cl) cycle could be linked with nuclear and selected renewable energy sources to decompose water into its constituents, oxygen and hydrogen, through intermediate copper and chlorine compounds. In this study, we present an integrated system approach to couple nuclear and renewable energy systems for hydrogen production. In this regard, nuclear and renewable energy systems are reviewed to establish some appropriate integrated system options for hydrogen production by a thermochemical cycle such as Cu–Cl cycle. Several possible applications involving nuclear independent and nuclear assisted renewable hydrogen production are proposed and discussed. Some of the considered options include storage of hydrogen and its conversion to electricity by fuel cells when needed.  相似文献   

18.
Photoelectrochemical (PEC) water splitting using nanomaterials is one of the promising techniques to generate hydrogen in an easier, cheaper and sustainable way. By modifying a photocatalyst with a suitable band width material can improve the overall solar-to-hydrogen (STH) energy conversion efficiency. Nanomaterials can tune their band width by controlling its size and morphology. In many studies, the importance of nanostructured materials, their morphological and crystalline effects in water splitting is highlighted. Charge separation and transportation is the major concern in PEC water splitting. Nanomaterials are having high surface to volume ratio which facilitates charge separation and suppress electron-hole pair recombination. This review focuses on the recent developments in water splitting techniques using PEC based nanomaterials as well as different strategies to improve hydrogen evolution.  相似文献   

19.
To solve resource, energy, and environmental issues, development of sustainable clean energy system is strongly required. In recent years, hydrogen has been paid much attention to as a clean energy. Solar hydrogen production by water splitting using a photocatalyst as artificial photosynthesis is a promising method to solve these issues. Efficient utilization of visible light comprised of solar light is essential for practical use. Three strategies, i.e., doping, control of valence band, and formation of solid solution are often utilized as the useful methods to develop visible light responsive photocatalysts. This mini-review introduces the recent work on visible-light-driven photocatalysts developed by substitution with metal cations of those strategies.  相似文献   

20.
Solar-assisted water splitting using photoelectrochemical (PEC) cell is an environmentally benign technology for the generation of hydrogen fuel. However, several limitations of the materials used in fabrication of PEC cell have considerably hindered its efficiency. Extensive efforts have been made to enhance the efficiency and reduce the hydrogen generation cost using PEC cells. Photoelectrodes that are stable, efficient and made of cost-effective materials with simple synthesizing methods are essential for commercially viable solar water splitting through PEC technology. To this end, hematite (α-Fe2O3) has been explored as an excellent photoanode material to be used in the application of PEC water oxidation owing to its suitable bandgap of 2.1 eV that can utilize almost 40% of the visible light. In this study, we have summarized the recent progress of α-Fe2O3 nanostructured thin films for improving the water oxidation. Strategic modifications of α-Fe2O3 photoanodes comprising nanostructuring, heterojunctions, surface treatment, elemental doping, and nanocomposites are highlighted and discussed. Some prospects related to the challenges and research in this innovative research area are also provided as a guiding layout in building design principles for the improvement of α-Fe2O3 photoanodes in photoelectrochemical water oxidation to solve the increasing environmental issues and energy crises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号