首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen adsorption capacity of Multiwalled carbon nanotubes (MWCNTs) decorated with Nickel (Ni) nanoparticles has been presented at room temperature and under moderate pressures of 4–20 bar. The functionalization of carbon nanotubes was carried by H2SO4-HNO3 reducing agents and the Ni supported MWCNTs (Ni-MWCNTs) were prepared by wet chemical method. The structure and morphology characterization of samples were performed by XRD, TEM, EDX and SEM analyses. These nanotubes then subjected to hydrogenation step by using Sievert's-like apparatus. The hydrogenation of the Ni-MWCNTs was performed at 298 K and moderate hydrogen pressures of 4–20 bar. The obtained results show that there is a correlation between hydrogen storage capacity and hydrogen pressure that; as the pressure was increased, hydrogen uptake capacity enhanced due to physisorption. In addition, maximum hydrogen storage capacity of Ni-MWCNTs was found to be 0.298 wt % at room temperature and under pressure of 20 bar.  相似文献   

2.
In this study, the hydrogen storage capacity of purified multiwalled carbon nanotubes (MWCNTs) was enhanced from 13- to 15-fold at a temperature of 298 K and pressure of 2.0 MPa, upon incorporation of 1.57–1.88 wt% of ultrafine Ti nanoparticles. The effect of a hydrogen spillover Ti catalyst on MWCNTs prepared using the sputtering method was investigated. A comparison between the hydrogen uptake by MWCNTs sputtered with Ti for 3000 s and that for 6000 s was also performed using the Sievert's volumetric apparatus. The significant enhancement in hydrogen uptake was attributed to the interfacial diffusion of hydrogen from Ti to the MWCNTs. The re-adsorption of hydrogen on the pristine MWCNTs and Ti-decorated MWCNTs dehydrogenated at 200 °C indicated that the samples did not compromise their reversible hydrogen uptake during the hydrogenation–dehydrogenation cycles. It was also found that longer exposure of Ti to the MWCNTs during sputtering improved the hydrogen storage capacity. This improvement could be attributed to the presence of a higher amount of Ti deposited on the MWCNTs, as indicated by thermogravimetric analysis study.  相似文献   

3.
Hydrogen uptake of pristine multi-walled carbon nanotubes is increased more than three-fold at 298 K and hydrogen pressure of 4.0 MPa, upon addition of hydrogen spillover catalyst manganese oxide, from 0.26 to 0.94 wt%. Simple and convenient in situ reduction method is used to prepare Mn-oxide/MWCNTs composite. XRD, FESEM, and TEM demonstrates nanostructural characterization of pristine MWCNTs and composite. TGA analysis of Mn-oxide/MWCNTs composites showed a single monotonous fall related to MWCNTs gasification. Enhancement of hydrogen storage capacity of composite is attributed to spillover mechanism owing to decoration of Mn-oxide nanoparticles on outer surface of MWCNTs. Hydrogen uptake follows monotonous dependence on hydrogen pressure. Oxide-MWCNTs composite not only shows high hydrogen storage capacity as compared to pristine, but also exhibit significant cyclic stability upon successive adsorption–desorption cycles.  相似文献   

4.
A comprehensive study has been conducted to evaluate the hydrogen uptake capacity of carboxylate functionalized multi-walled carbon nanotubes (f-MWCNTs) after strategic incorporation of Fe and Cu nanoparticles on the surface. Metal decorated multi-walled carbon nanotubes (Fe@f-MWCNTs and Cu@f-MWCNTs) were prepared by refluxing various concentrations of metal precursor and f-MWCNTs in different reaction medium such as water, amine and DMF. The prepared materials were characterized by FT-IR, powder XRD, SEM, TEM and BET analyzer. The adsorption isotherms revealed that the hydrogen storage capacity of Fe@f-MWCNTs and Cu@f-MWCNTs was 0.55 and 0.68 wt%, respectively, at 253 K and 70 bar. Similarly, both compounds showed 0.39 and 0.5 wt% adsorption at 298 K and 70 bar, respectively. The uptake of hydrogen by metal decorated multi-walled carbon nanotubes was remarkably enhanced by a factor of 2 and 5 times that of Pristine MWCNT at 253 K and 298 K, respectively.  相似文献   

5.
Floating catalyst chemical vapor deposition method was used for the synthesis of boron doped carbon nanotubes (BCNTs) using ethanol, triethyl borate and ferrocene as carbon source, boron source and catalyst precursor, respectively. The synthesized BCNTs were characterized by transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy (XPS). The hydrogen adsorption activity was studied for BCNTs along with undoped single walled and multi walled carbon nanotubes. Significant enhancement in the hydrogen storage value was found in doped CNTs as compared to the other undoped CNTs. Hydrogen storage for BCNTs was found to be 2.5 wt% at 10 bar and 77 K. In-situ doped BCNTs gives higher hydrogen adsorption as compared to ex-situ doped BCNTs. The Langmuir adsorption isotherm was found to be suitable for describing the adsorption isotherm as compared with Freundlich isotherm. Maximum adsorption capacity was about 9.8 wt% at 77 K. Pseudo second order kinetics was followed by BCNTs for hydrogen adsorption.  相似文献   

6.
Hydrogen is considered as the most promising clean energy carrier because of its abundance, environmental friendliness and high conversion efficiency. However, developing safe, compact, light weight and cost-effective hydrogen storage materials is one of the most technically challenging barriers to the widespread use of hydrogen as fuel. The present work reports the hydrogen storage performance of multi-walled carbon nanotubes (MWCNT)/hexagonal boron nitride (h-BN) nanocomposites (MWCNT/h-BN), where ultrasonication method is adopted for the synthesis of the MWCNT/h-BN nanocomposites. Hydrogenation process was carried out using Seiverts-like hydrogenation setup. Characterization techniques such as X-ray Diffraction (XRD), Micro-Raman Spectroscopy, Fourier Transform Infrared (FTIR) Spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDX), Nitrogen adsorption–desorption isothermal studies (BET), CHN-elemental analysis and Thermogravimetric Analysis (TGA) were used to analyze the samples at various stages of the experiment. A maximum of 2.3 wt% hydrogen storage is achieved in the case of acid treated MWCNTs (A-MWCNT) with 5 wt% of h-BN nanoparticles compared to pure MWCNTs that could store 0.15 wt% only. Moreover the calculated binding energy (0.42 eV) of stored hydrogen of A-MWCNT with 5 wt% of h-BN nanocomposite lies in the recommended range of binding energy (0.2–0.6 eV) for fuel cell applications. The TG study shows that 100% desorption is achieved at the temperature range of 120–410 °C and confirms that the prepared hydrogen storage medium will serve effectively in the realm of hydrogen fuel economy in near future.  相似文献   

7.
This paper reports a facile method for the preparation of nitrogen-doped carbon nanotubes (N-doped CNTs) that shows enhanced hydrogen storage capacity. The synthesis method involves simple pyrolysis of melamine using FeCl3 as catalyst in tube furnace. The materials were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, elemental analysis, Raman spectroscopy, and nitrogen adsorption–desorption analysis. The results indicated that the prepared N-doped CNTs have a bamboo-like structure with thin compartment layers. The nitrogen doping concentration, specific surface area, and total pore volume of the N-doped CNTs were determined to be 1.5 at%, 135 m2/g, and 0.38 cm3/g, respectively. The hydrogen adsorption measurements at 77 K showed that the N-doped CNTs exhibits gravimetric hydrogen uptake of 0.21 wt% at 1 bar and 1.21 wt% at 7 bar. At room temperature, hydrogen uptake as high as 0.17 wt% at 298 K and 19 bar is achieved, which is among the highest data reported for the N-doped carbon materials under the same condition.  相似文献   

8.
Pd doped Multi-Walled Carbon Nanotubes were prepared via supercritical carbon dioxide deposition method in order to enhance the hydrogen uptake capacity of carbon nanotubes at ambient conditions. A new bipyridyl precursor that enables reduction at moderate conditions was used during preparation of the sample. Both XRD analyses and TEM images confirmed that average Pd nanoparticle size distribution was around 10 nm. Hydrogen adsorption and desorption experiments at room temperature with very low pressures (0–0.133 bar) were conducted together with temperature programmed desorption (TPD) and reduction (TPR) experiments on undoped and doped materials to understand the complete hydrogen uptake profile of the materials. TPD experiments showed that Pd nanoparticles increased the hydrogen desorption activity at moderate temperatures around at 38 °C while for undoped materials it was determined around at 600 °C. Moreover, a drastic enhancement of hydrogen storage was recorded from 44 μmol/g sample for undoped material to 737 μmol/g sample for doped material through adsorption/desorption isotherms at room temperature. This enhancement, also verified by TPR, was attributed to spillover effect.  相似文献   

9.
This work presents the synthesis and characterization of multi-walled carbon nanotubes (multi-walled CNTs) deposited with Pd or V and their hydrogen storage capacity measured by Sievert's volumetric apparatus. The CNTs were grown by the CVD method using LPG and LaNi5 as the carbon source and catalyst, respectively. Pd was impregnated on the CNTs by the reflux method with hydrogen gas as a reducing agent, while V was embedded on the CNTs by the vapor deposition method. The average metal particle size deposited on the CNTs was around 5.8 nm for Pd and 3.6 nm for V. Hydrogen adsorption experiments were performed at room temperature and at −196 °C under a hydrogen pressure of 65 bar. At −196 °C, the treated CNTs had a maximum hydrogen uptake of 1.21 wt%, while the CNTs deposited with Pd (Pd-CNTs) and CNTs deposited with V (V-CNTs) possessed lower surface areas, inducing lower hydrogen adsorption capacities of 0.37 and 0.4 wt%, respectively. For hydrogen sorption at room temperature, the CNTs decorated with the metal nanoparticles had a higher hydrogen uptake compared to the treated CNTs. Hydrogen adsorption capacity was 0.125 and 0.1 wt% for the Pd-CNTs and V-CNTs, respectively, while the hydrogen uptake of the treated CNTs was <0.01 wt%. For the second cycle, only half of the first hydrogen uptake was obtained, and this was attributed to the re-crystallization of the defect sites on the carbon substrate after the first hydrogen desorption.  相似文献   

10.
In this study, the effect of surface activation of multi-walled carbon nanotubes (MWCNTs) by KOH along with loading of cobalt and lithium nanoparticles on the surface of MWCNTs are investigated. In the first step, surface activation parameters, i.e. MWCNT/KOH weight ratio, activation temperature, and activation time are optimized to give the highest hydrogen uptake. According to obtained results, the optimum synthesis conditions are MWCNT/KOH weight ratio of 1:5, 800 °C, and 1 h of activation duration. Afterward, cobalt and lithium metal nanoparticles are doped discretely on the surface of activated nanotubes. It is demonstrated that amounts of loaded cobalt and lithium metals are 5.5 and 1.9% wt, respectively. In addition, it is revealed that the amount of hydrogen storage capacity for cobalt-loaded and lithium-loaded MWCNTs are 1.06% wt. and 1.33% wt., respectively (at 278 K) which are higher than the capacity of pristine and activated MWCNT samples.  相似文献   

11.
In this paper, we investigate the performance of large-sized single-walled carbon nanotubes (SWCNTs) incorporated with mono vacancy (MV), double vacancy (DV), and Stone-Wales (SW) topological defects as a medium for hydrogen adsorption using molecular dynamics (MD) simulations. A novel potential energy distribution (PED) method is employed with MD simulations to determine the adsorbed hydrogen molecules and associated binding energy. In addition, we extended our work to bundles of defected SWCNT (D-SWCNT) that provided the most prominent adsorption capacity subjected to temperature and pressure variations. In particular, four representative (8,8), (13,13), (19,19), and (33,0) SWCNTs are simulated under various thermodynamic conditions, and collected adsorption isotherms data reveals higher gravimetric density for large-sized SWCNT. At 77 K and 100 bar, the maximum hydrogen uptake in pristine SWCNTs is 6.88–7.73 wt%, depending on the size of the nanotubes. In contrast, the binding energy decreases as the nanotube size increases. At 77 K, (8,8) and (19,19) SWCNTs have average binding energies of 0.043 and 0.021 eV, respectively. Meanwhile, (19,19) SWCNT incorporated with 1% DV defects having 5–8 rings (DV1) and MV defects yields the maximum storage capacity of 9.07 wt% and 8.62 wt%, respectively, at 77 K. Furthermore, the increment of about 43.29% in wt.% is obtained for DV1 defected nanotube relative to pristine SWCNT at 300 K and 100 bar. Moreover, our results indicate the maximum hydrogen uptake of 8.65, 7.15, 2.57, and 1.33 wt% in the square array of DV1 defect embedded SWCNTs at 77, 100, 200, and 300 K, respectively, compared to 9.07, 6.65, 2.24, and 1.11 wt% in the isolated D-SWCNT at identical conditions. As a result, the D-SWCNT bundles are better suited for hydrogen storage at high temperatures than the isolated D-SWCNT. Our present study paves the way to progress toward the efficient usage of D-SWCNTs with few chemical alterations for scaled-up applications.  相似文献   

12.
Metal organic framework (MOF) are widely used in adsorption and separation due to their porous nature, high surface area, structural diversity and lower crystal density. Due to their exceptional thermal and chemical stability, Cu-based MOF are considered excellent hydrogen storage materials in the world of MOFs. Efforts to assess the effectiveness of hydrogen storage in MOFs with molecular simulation and theoretical modeling are crucial in identifying the most promising materials before extensive experiments are undertaken. In the current work, hydrogen adsorption in four copper MOFs namely, MOF-199, MOF 399, PCN-6′, and PCN-20 has been analyzed. These MOFs have a similar secondary building unit (SBU) structure, i.e., twisted boracite (tbo) topology. The Grand Canonical Monte Carlo (GCMC) simulation was carried at room temperature (298 K) as well as at cryogenic temperature (77 K) and pressures ranging from 0 to 1 bar and 0–50 bar. These temperatures and pressure were selected to comply with the conditions set by department of energy (DOE) and to perform a comparative study on hydrogen adsorption at two different temperatures. The adsorption isotherm, isosteric heat, and the adsorption sites were analyzed in all the MOFs. The findings revealed that isosteric heat influenced hydrogen uptake at low pressures, while at high pressures, porosity and surface area affected hydrogen storage capacity. PCN-6′ is considered viable material at 298 K and 77 K due to its high hydrogen uptake.  相似文献   

13.
Multi-walled carbon nanotubes (MWCNTs) with diameter of about 50 nm were synthesized using thermal chemical vapor deposition. We have investigated the influence of Mg doping to the MWCNTs on its hydrogen storage property. TEM micrographs showed that Mg was attached to the MWCNTs and discontinuous arrangement of the carbon walls was recognized in the MWCNTs. According to XPS and BET analyses, the surface functional groups and pore size of the Mg-MWCNTs are increased by interactions between the Mg and the MWCNT’s outer walls. The electrochemical discharging curves of the MWCNTs and Mg-doped MWCNTs revealed that the hydrogen storage capacity was 363 and 450 mAhg−1, respectively. Volumetric technique determined that the hydrogen storage capacity of the MWCNTs and Mg-MWCNTs was 0.7 and 1.5 wt%, respectively. There are likely a couple of mechanism for Mg metal that used as dopant to pure MWCNTs, one involves increasing of adsorption binding energy and desorption temperature due to increasing defect sites (oxygen functional groups), while the second explains by electron transfer from metal atoms to carbon atoms resulting in a considerable increase in both the adsorption binding energy and desorption temperature.  相似文献   

14.
We report on an easy synthesis method for the preparation of a hybrid composite of Pt-loaded MWCNTs@MOF-5 [Zn4O(benzene-1,4-dicarboxylate)3] that greatly enhanced hydrogen storage capacity at room temperature. To prepare the composite, we first prepared Pt-loaded MWCNTs, which were then incorporated in-situ into the MOF-5 crystals. The obtained composite was characterized by various techniques such as powder X-ray diffractometry, optical microscopy, porosimetry by nitrogen adsorption, and hydrogen adsorption. The analyses confirmed that the product has a highly crystalline structure with a Langmuir specific surface area of over 2000 m2/g. The hybrid composite was shown to have a hydrogen storage capacity of 1.25 wt% at room temperature and 100 bar, and 1.89 wt% at cryogenic temperature and 1 bar. These H2 storage capacities represent significant increases over those of virgin MOF-5s and Pt-loaded MWCNTs.  相似文献   

15.
Li+ doping is regarded as an effective strategy to enhance the room-temperature hydrogen storage of metal-organic frameworks (MOFs). In this work, Li+ is doped into both MIL-100(Fe) and MIL-100(Fe)/graphene oxide (GO) composite, and it is demonstrated that the hydrogen uptake of Li+ doped MIL-100(Fe)/GO (2.02 wt%) is improved by 135% compared with Li+ doped MIL-100(Fe) (0.86 wt%) at 298 K and 50 bar, which is ascribed to its higher isosteric heat of adsorption (7.33 kJ/mol) resulting from its more accessible adsorption sites provided by doped Li+ ions and ultramicropores. Grand canonical Monte Carlo (GCMC) simulation reveals that Li+ ions distributing in the interface between MIL-100(Fe) and GO within MIL-100(Fe)/GO composite is favorable for hydrogen adsorption owing to the increased number of adsorption sites, thus contributing to the enhanced hydrogen storage capacity. These findings demonstrate that MIL-100(Fe)/GO is a more promising Li+ doping substrate than MIL-100(Fe).  相似文献   

16.
Metal-Organic Frameworks (MOFs) have emerged as potential hydrogen storage media due to their high surface area, pore volume and adjustable pore sizes. The large void space generated by cages in MOFs is not completely utilized for hydrogen storage application owing to weak interactions between the walls of MOFs and H2 molecules. These unutilized volumes in MOFs can be effectively utilized by incorporation of other microporous materials such as single walled carbon nanotubes into the pores of MOFs which could effectively tune the pore size and pore volume of the material towards hydrogen sorption. Single walled carbon nanotubes (SWNT) incorporated MIL-101 composite MOF material (SWNT@MIL-101) was synthesized by adding purified single walled carbon nanotube (SWNT) in situ during the synthesis of MIL-101. The powder X-ray diffraction patterns of SWNT@MIL-101 showed the structure of MOF was not disturbed by SWNT incorporation. Hydrogen sorption capacities of MIL-101 was observed to increase from 6.37 to 9.18 wt% at 77 K up to 60 bar and from 0.23 to 0.64 wt% at 298 K up to 60 bar. The increment in the hydrogen uptake capacities of composite MOF materials was attributed to the decrease in the pore size and enhancement of micropore volume of MIL-101 by single walled carbon nanotube incorporation.  相似文献   

17.
Li-Mg-N-H systems have been focused on as one of the most promising hydrogen storage systems owing to their high hydrogen contents and binary nitride, LiMgN, has a high gravimetric storage density of 8.2 wt% H2. We synthesized LiMgN by a hydriding thermal reaction between Mg and LiNH2 under various H2 pressures and a subsequent dehydrogenation reaction, and optimized conditions for the formation of pure LiMgN. The results demonstrate that pure LiMgN can be produced using hydriding thermal synthesis at 80 bar H2 pressure and 723 K. The hydriding and dehydriding characteristics of as-synthesized LiMgN were investigated by a Sievers’ type instrument. The reaction product LiMgN can be rehydrogenated by reacting with H2 under 80 bar of hydrogen pressure at 573 K, and then released under less than 0.5 bar at 573 K. The measured H2 capacity is about 6.8 wt% during the hydrogenation process.  相似文献   

18.
Boron and nitrogen codoped carbon nanotubes (B,N-CNTs) were synthesized by floating catalyst chemical vapor deposition (FCCVD) using ethanol, ferrocene, boric acid and imidazole as carbon source, catalyst, boron and nitrogen precursors, respectively. The samples were analyzed using transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis and X-ray photoemission spectroscopy. 1.5 at% B and 1.34 at% N could be doped in the resultant structure, which has higher length (few μm) with higher thermal stability (621 °C). At pressure 16 bar, hydrogen adsorption for B,N-CNTs was found to be 1.96 and 0.35 wt% at 77 K and 303 K, respectively. Hydrogen storage as function of time was also reported for both the cases. The adsorption process follow pseudo second order kinetics. The present study reveals that the codoping of CNTs aid in tuning properties of CNTs for hydrogen storage application.  相似文献   

19.
Based on the positive influence of carbon materials and transition metals, a new type of Mg-based composites with particle size of ~800 nm has been designed by doping hydrogenated Mg–Ni–La alloy with multi-walled carbon nanotubes (MWCNTs) and/or Co nanoparticles. The microstructures, temperature related hydrogen absorption/desorption kinetics and dehydrogenation mechanisms are investigated in detail. The results demonstrate that MWCNTs and Co dispersedly distribute on the surface of Mg–Ni–La particles after high-energy ball milling due to powders’ repeated cold welding and tearing. The experimental samples exhibit improved hydrogen storage behaviors and the addition of MWCNTs and Co can further accelerate the de-/hydriding kinetics. For instance, the Mg–Ni–La–Co sample can absorb 3.63 wt% H2 within 40 min at 343 K. Dehydrogenation analyses demonstrate that the positive effect of MWCNTs is more obvious than that of Co nanoparticles for the experimental samples. The addition of MWCNTs and Co leads to the average dehydrogenation activation energy of experimental samples decreasing to 82.1 and 84.5 kJ mol?1, respectively, indicating a significant decrease of dehydrogenation energy barriers. In addition, analyses of dehydrogenation mechanisms indicate that the rate-limiting steps vary with the addition of MWCTNs and Co nanoparticles.  相似文献   

20.
Catalyzed hydrogen spillover for hydrogen storage on microporous organic materials has been studied in this work. The method, i.e. “preparation of Pt nanoparticle first and then in situ formation of microporous materials” has been developed for the synthesis of microporous hypercrosslinked polymers with highly dispersed Pt nanoparticles. Hydrogen adsorption isotherms are measured at 77.3 K and up to 1.13 bar, and 298.15 K and up to 19 bar. By containing 2 wt % Pt nanoparticles, the hydrogen storage capacity of hypercrosslinked polymers is enhanced to 0.21 wt % at 298.15 K and 19 bar. Compared to the similar materials without Pt nanoparticles, the H2 adsorption amount has been enhanced by a factor of 1.75.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号