首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The self-standing Co decorated Cu2O/CuS-based porous electrocatalyst was prepared with the help of simple electrodeposition and hydrothermal method. The structural characterizations of fabricated samples were performed with X-Ray diffraction spectroscopy and X-Ray photoelectron spectroscopy, while the morphology of catalysts was studied with the help of Field-Emission Spectroscopy and Transmission Electron Spectroscopy. The electrochemical performance of the hydrogen evolution reaction was checked in a basic electrolyte. The gradual increment in the electrochemical performance of Cu2O was observed when it underwent sulfurization without and with Co precursor respectively. The best electrochemical performance for hydrogen evolution reaction with an overpotential of 150.29 mV to achieve a geometric current density of 10 mA/cm2 was observed for the Cu2O sample sulfurized with Co precursor. The results of different characterizations suggested that the improved electrochemical performance could be attributed to the increased intrinsic activity and surface porosity of the electrocatalyst after sulfurization.  相似文献   

2.
The preparation of hydrogen evolution reaction (HER) electrocatalyst with high catalytic performance is a huge challenge. In this work, we develop a MoP/Fe2P/RGO composite as a electrocatalyst for HER. The MoP/Fe2P/RGO exhibits excellent electrocatalytic performance with a Tafel slope and an onset overpotential of 51 mV/dec and 105 mV, respectively. To drive 10 mA/cm2, it only requires a small over-potential of 156 mV. The high electrocatalytic HER activity is mainly due to the synergistic effect of MoP and Fe2P. In addition, the introduction of RGO not only prevents particle aggregation and coalescence during high temperature phosphating, but also improves the conductivity of the catalyst.  相似文献   

3.
Electrocatalytic hydrogen evolution under alkaline media holds great promising in hydrogen energy production. Transition-metal sulfides (TMSs) are attractive for electrocatalytic alkaline hydrogen evolution, yet their catalytic performance is unsatisfactory owing to the sluggish water dissociation kinetics. Herein, a Mn/N co-doping strategy is proposed to regulate the water dissociation kinetics of Co9S8 nanowires array grown on nickel foam thus improve the activity of hydrogen evolution reaction (HER). The optimal Mn/N co-doping Co9S8 (Mn–N–Co9S8) catalyst achieves low overpotentials of 102 and 238 mV at 10 and 100 mA cm?2 in the 1 M KOH solution, respectively, remarkably higher than the single-doping Mn–Co9S8 and N–Co9S8 as well as superior to many reported Co9S8-based HER electrocatalysts. Density functional theory (DFT) calculation results confirm that the water dissociation barrier of the Mn–N–Co9S8 is reduced significantly owing to the synergistic co-doping of Mn and N, which accounts for the enhanced alkaline HER performance. This study offers an effective strategy to enhance the alkaline HER activity of TMSs by accelerating water dissociation kinetic via the cation and anion co-doping strategy.  相似文献   

4.
Rational design of transition metal catalysts with robust and durable electrocatalytic activity for hydrogen evolution reactions (HER) is extremely important for renewable energy conversion and storage, as well as water splitting. Heteroatom doping has emerged as a feasible strategy for enhancing electrocatalytic activity. Here, cobalt nanoparticles (Co-NPs) were coated with nitrogen-doped carbon nanotubes (NCNTs) prepared via an in situ growth on accordion-like Ti3C2Tx-MXene (Co-NCNT/Ti3C2Tx). Such an intriguing structure showed great features: abundant anchoring sites for NCNT in situ growth, intimate integration of Co-NPs and NCNTs, high-speed electron transfer between 1D NCNTs and 2D Ti3C2Tx-MXenes, and a large number of effective catalytic active sites. This Co-NCNT/Ti3C2Tx hybrid catalyst was demonstrated to possess excellent HER performance with low overpotential (η10, 190 mV), small Tafel slope (78.4 mV dec−1), large electrochemically active surface area, and good long-term stability, thus outperforming many reported electrocatalysts. The present strategy provided a facile route for the design of transition metal HER catalysts with NCNT and MXene.  相似文献   

5.
Hydrogen has attracted huge interest globally as a durable, environmentally safe and renewable fuel. Electrocatalytic hydrogen evolution reaction (HER) is one of the most promising methods for large scale hydrogen production, but the high cost of Pt-based materials which exhibit the highest activity for HER forced researchers to find alternative electro-catalyst. In this study, we report noble metal free a 3D hybrid composite of tungsten-molybdenum oxide and reduced graphene oxide (GO) prepared by a simple one step hydrothermal method for HER. Benefitting from the synergistic effect between tungsten-molybdenum oxide nanowires and reduced graphene oxide, the obtained W-Mo-O/rGO nanocomposite showed excellent electro-catalytic activity for HER with onset potential 50 mV, a Tafel slope of 46 mV decade?1 and a large cathodic current, while the tungsten-molybdenum oxide nanowires itself is not as efficient HER catalyst. Additionally, W-Mo-O/rGO composite also demonstrated good durability up to 2000 cycles in acidic medium. The enhanced and durable hydrogen evolution reaction activity stemmed from the synergistic effect broadens noble metal free catalysts for HER and provides an insight into the design and synthesis of low-cost and environment friendly catalysts in electrochemical hydrogen production.  相似文献   

6.
Facile fabrication of high-performance catalyst based on low-cost metals for sustainable hydrogen evolution is still a matter of cardinal significance. However, synthetic approaches for electrocatalyst are usually complicated and the yields are often low. Herein, we report a one-step simple method for the large-scale synthesis of Co/Ni-MoO2 composite as efficient and stable hydrogen evolution reaction (HER) electrocatalyst to drive 10 mA cm?2 current density with a low overpotential of 103 mV in basic media. Co-MoO2 and Ni-MoO2 were also prepared using this method with overpotential of 137 and 130 mV, respectively, to gain the same current density. These results indicate that this facile synthesis approach is of great practical importance as it can be easily used for large-scale preparation of electrocatalysts in industry.  相似文献   

7.
Hydrogen is zero-emission fuel production for a clean environment as alternative effective the energy source is still moreover, an effective challenge in near future due to the lack of efficient and inexpensive catalysts. An efficient electrocatalysts structure having logical design which holds a paramount significance for the hydrogen evolution reaction (HER) but rarely noble metal Pt-like activity achieved by the transition metal oxides electrocatalysts based on oxides matured and cooperative with coupling metal oxides could be considered as a desired substitute electrocatalysts to change Pt/C based nano composite materials. Herein, un-noble the metal oxides of hetero structure consisting of Co3O4/MoS2 based-electrocatalysts nanocomposite material. The desirable out-comes show that Co3O4/MoS2 composite material providing extraordinary efficient HER kinetics activity in different experimental designs. The Co3O4/MoS2 based electro-catalyst increases the best activity of HER kinetics performance especially measured in 1 M KOH solution condition and offers an influential interfacing engineering strategy at very minute over potential of 348 mV evaluated and small Tafel slopes 46 mV/dec for HER performance. This work elucidates interest for efficient electrocatalysts for a broader range of scalable applications in the development of renewable energies, the functional materials such as solar cells, lithium sulphur-batteries and energy chemistry advancing.  相似文献   

8.
Herein, 3D graphene is synthesized from the cation exchange resin by a cheap and efficient strategy, and then hexagonal micro-coin Co(OH)2 particles are loaded by a simple double displacement reaction. Different analytical techniques confirm that the 3D graphene exhibit rose petal-like structure, which is decorated with Co(OH)2 hexagonal micro coin structure. The hexagonal micro-coin Co(OH)2 are the actual active sites for electrochemical reactions, while conductive graphene eases the transport of electrons which may further heighten their performance. The as-synthesized electrocatalysts are used to study different electrochemical measurement in an alkaline (1 M KOH) solution. The as-prepared Co(OH)2-3 dimensional graphene-0.5 delivered the overpotential value of −0.367 and 1.599 V (vs RHE) (10 mA cm−2), the calculated Tafel slope values were 96 and 110 mV dec−1 for hydrogen and oxygen evolution reactions correspondingly. Different concentrations of Co were used to study the effect of Co on electrochemical measurements. The data shows that Co(OH)2-3DG-0.5 exhibited better performance than the other as-prepared Co(OH)2 based electrocatalysts. The as-prepared electrocatalyst also shows low Rct and reasonable stability for hydrogen and oxygen evolution reaction.  相似文献   

9.
In this study, Zn, S, and P co-doped nitrogen N-enriched carbon (ZnSP/NC) was successfully fabricated as an efficient electrocatalyst for the hydrogen evolution reaction (HER) process via pyrolysis, sulfurization, and phosphorization. The metal Zn derived from zeolitic imidazolate framework-8 (ZIF-8) was combined with the S element to form ZnS nanoparticles, and then embedded in N-enriched carbon during the sulfurization process. Following this, the P element was well-dispersed in the catalyst via phosphorization. It was found that ZnSP/NC exhibits excellent electrocatalytic activity when used as a catalyst for the HER process. ZnSP/NC, with an overpotential of 171 mV and a Tafel slope of 54.78 mV dec−1, demonstrates superior electrocatalytic activity as compared to Zn/NC (277 mV, 92.34 mV dec−1) and ZnS/NC (241 mV, 76.41 mV dec−1). During the HER process, ZnS and P serve as active sites, while the N-enriched carbon provides reliable electronic transmission. The synergistic effects among the ZnS, P, and N-enriched carbon result in an excellent electrocatalytic activity of ZnSP/NC for the HER process.  相似文献   

10.
An advanced energy conversion technology of water splitting involves two half-reactions of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this work, we synthesized pyrochlore manganese phosphate (Mn2P2O7) nanoplatelets by a simple coprecipitation method and made a composite with two-dimensional graphene nanosheets (GNS) through the ultrasonication process. Various characterization techniques like PXRD, FT-IR, Raman, XPS, SEM, and HR-TEM confirmed the formation of Mn2P2O7-GNS composite material. The catalyst reveals outstanding performance towards HER activity with 0.333 V (vs. RHE) in an acidic medium and OER activity with 1.47 V (vs. RHE) in an alkaline medium at a current density of 10 mA/cm2. The combined experimental study with DFT calculations reveals that the superior electrochemical action may originate from the synergistic effects associated with the high electronic conductivity of GNS and the interfacial belongings formed within Mn2P2O7 and GNS. Also, the GNS plays an essential role in the composite to prevent the aggregation of nanoplatelet particles, thereby increasing active sites and reducing the overpotential. This work proposed recent advances of Mn2P2O7-GNS based materials modified on glassy carbon electrode (GCE) as a stable and durable bifunctional electrocatalyst for the perspectives of the future development of a clean energy landscape.  相似文献   

11.
Design, synthesize and application of metal-oxide based bifunctional electrocatalysts with sustainability and efficient activity in water splitting is significant among the wide spread researches in energy applications. Herein, bifunctional electrocatalysts composed of NiFe2O4 dispersed on N-doped graphene has been prepared by in-situ polymerization and characterized for further bifunctional catalytic performances. The electrocatalyst exhibited bespoken performances as cathode in HER as well as anode in OER at alkaline electrolyte. The nanocomposite N-doped graphene/NiFe2O4 (NGNF) exhibited low overpotential of 184 mV in HER and 340 mV in OER for attaining the current density of 10 mA/cm2 which is far better than their pristine counterparts. Similarly its Tafel slopes were found to be 82.9 mV/dec and 93.2 mV/dec for HER and OER. As an electrocatalyst NGNF outperformed pure nickel ferrite and graphene/NiFe2O4 (GNF) as bifunctional electrocatalyst with low overpotential and Tafel slopes. This indicates the impact of graphene and N-doping on graphene in the activity of pure NF. The graphene in the composite and the N-dopants provoked the catalytic activity and tuned the electron transfer and interaction with the electrolyte. Thus, herein we endow with strategies of preparing highly efficient bifunctional electrocatalysts by coupling spinel oxides and N-doped graphene for HER and OER.  相似文献   

12.
Exploring cost-effective electrocatalysts for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) have been a goal in the sustainable hydrogen-based society. Although abundant of alternative materials have been developed, Pt/C remains the most efficient electrocatalyst for the ORR and HER. Nevertheless, improving the stability and reducing Pt loading for Pt-based electrocatalysts are still big challenges. Herein, semiconductor crystals Na4Ge9O20 with richer topology structure was chosen as electrocatalyst support, subsequently, the conductive polymer polyaniline (PANI) was decorated on semiconductor Na4Ge9O20, low-content Pt nanoparticles (Pt NPs) with the size of 1–3 nm were then uniformly anchored on the surface of Na4Ge9O20-PANI to obtain the efficient bifunctional electrocatalyst for ORR and HER in the acidic solution. More importantly, the stability and mass activity of the obtained electrocatalyst 5 wt% Pt/Na4Ge9O20-PNAI are significantly higher than that of commercial 20 wt% Pt/C for ORR and HER. It was proposed that the PANI could not only promote the electron transfer from Na4Ge9O20 to Pt, but also stabilize the Pt NPs, thus, improving the electrocatalytic activity and stability of 5 wt% Pt/Na4Ge9O20-PNAI.  相似文献   

13.
An ideal electrocatalyst for the hydrogen evolution reaction of water splitting requires substantial active sites with high catalytic activity, fast electron and mass transfer, low gas adsorption energy, and high stability. However, a single component catalyst usually has only one of the many properties of an ideal electrocatalyst. Herein, for the first time, we synthesize CoxSe/MoSe2 micro-prisms on foam via a hydrothermal and selenization strategy. After selenization, a crystallized CoMoO4 smooth prismatic structure can be converted into a CoxSe/MoSe2 prismatic structure with lamellar morphology. Such synergistic effects lead to CoxSe/MoSe2 superior electrochemical catalytic activity with a 109 mV over-potential at 10 mA cm−2 and 204 mV over-potential at 100 mA cm−2, an appropriate Tafel slope of 90 mV dec−1, and remarkable long-term stability during 20 h of testing for the hydrogen evolution reaction in an alkaline medium. Density-functional calculations reveal the absorption energy of water and Gibbs free-energy of intermediate adsorb hydrogen of CoxSe/MoSe2 is more favorable for hydrogen evolution reaction than single component catalyst. Both experimental and theoretical calculation results reveal that synergistic effect can efficiently reduce energy barrier of both the initial water adsorption step and subsequent H2 generation on binary catalysts, and improve catalytic activity.  相似文献   

14.
Hydrogen (H2) is the future energy carrier and it is quite challenging to produce at a large-scale on economic basis. The water splitting technique has achieved a good place in H2 production. To generate efficient electrocatalysts for the Hydrogen evolution reaction (HER), low-cost synthetic designs are necessary. In our study, a one-step co-precipitation reduction process was used to synthesize NiWS electrocatalyst. The crystalline structure, phase purity, elemental composition and the surface morphology of the as-prepared samples have been examined by different characterization techniques. These techniques have proved that the elemental presence and formation of NiWS with high crystalline nature (rhombohedral). Furthermore, the performance of the electrocatalyst towards HER has been evaluated through electrochemical methods. On analysis, NiWS/CNT showed an excellent electrochemical activity of 175 mV, and pure NiWS showed 201 mV at 10 mA/cm2 in an alkaline electrolyte. These over-potential values are lower than HER in acid and neutral electrolytes. Further, the as-prepared NiWS/CNT proved to be a highly stable and efficient platinum-free electrocatalyst for HER.  相似文献   

15.
Oxygen evolution reaction (OER) is a rate-limiting step in electrocatalytic water splitting due to its sluggish reaction kinetics. Therefore, it is still challengeable to develop an inexpensive and efficient OER catalyst via a facile and scalable synthesis method. To address such issues, herein, we present a facile and scalable approach to prepare ultrathin NiSe2/FeSe2 heterostructural nanoparticles in-situ grown on NiFe foam (NFS/NFF), which can be employed as a self-supported non-noble metal-based catalyst for OER. The NFS/NFF catalyst delivers outstanding OER performance with a small Tafel slope of 57.07 mV dec−1 and a low overpotential of 274 mV at 40 mA cm−2 and displays terrific long-term stability, surpassing the performance of commercial RuO2 and single component NiSe2/NF catalyst. The results of XPS manifest that there is a strong heterointerface interaction between NiSe2 and FeSe2. In addition, combined with density functional theory (DFT) calculations, we further confirmed that the synergistic interface effect between NiSe2 and FeSe2 reduces the value of the Gibbs free energy of oxygen-containing intermediates as determining step (RDS) from 3.15 eV (NiSe2) to 2.41 eV (NiSe2/FeSe2 heterostructures), leading to excellent OER performance. This work provides a novel strategy to rationally design and fabricate selenide-based heterostructural nanoparticles via a facile method, which can extend to prepare other non-precious OER catalysts with high efficiency and long-term stability.  相似文献   

16.
Development of highly efficient and cheap electrocatalysts towards the hydrogen evolution reaction (HER) is of great importance for electrochemical water splitting. Herein, hybrid Cu/NiMo-P nanowires on the copper foam were successfully fabricated via a simple two-step method. The hierarchically structured Cu/NiMo-P exhibits large surface areas and rapid electron transfer ability, leading to enhanced catalytic activity. The as-prepared Cu/NiMo-P electrodes need overpotentials of 34 mV and 130 mV to obtain 10 mA cm?2 for HER in acidic and alkaline solutions, respectively. Density functional theory (DFT) calculations reveal that the Cu/NiMo-P hybrid has a more thermo-neutral hydrogen adsorption free energy and enhanced charge transfer ability as well.  相似文献   

17.
A hierarchically porous MoS2 on Ni3S2 nanorod array on Ni foam (MoS2/Ni3S2/NF) was firstly fabricated through a simple microwave-assisted hydrothermal method, and then followed by electrochemical deposition approach in which MoS2/Ni3S2/Ni foam is decorated with CoS (CoSMoS2/Ni3S2/NF). In contrast to conventional hydrothermal approach, microwave irradiation accelerates the synthesis of MoS2/Ni3S2/Ni foam from time of >20 h–2 h. The characterization of CoSMoS2/Ni3S2/NF by scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) indicate that a whole scale of 1D the Ni3S2 nanorods were hierarchically integrated with MoS2 and CoS nanosheets. The as-synthesized CoSMoS2/Ni3S2/NF hybrid not only endows the ease transport of electrons along Ni3S2 nanorods to Ni foam, but also accommodates maximal exposure of active edge sites to the reactants through hierarchically porous CoS doped MoS2 nanosheets, accomplishing the promoted kinetics and activity for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). By electrochemical measurements such as linear sweep voltammetry (LSV) and electrochemical impedance spectroscope (EIS), we find that the CoSMoS2/Ni3S2/NF hybrid shows markedly enhanced electrochemical performance for both HER and OER. Specifically, the optimal CoSMoS2/Ni3S2/NF8C possesses the low overpotentials (η10) of 85 and 225 mV at current density (|j|) of 10 mA cm?2 in 1.0 M KOH and the small 62.3 and 46.1 mV dec?1 Tafel slope for HER and OER, respectively, outperforming those of most of the current noble metal-free electrocatalysts. These results highlight the fact that CoSMoS2/Ni3S2/NF is a high-performance, noble-metal-free electro-catalyst, and provide a potential avenue toward achieving an enhanced electrocatalytic activity towards both in HER and OER. Yet the duration of the as prepared catalyst in OER still need to be improved.  相似文献   

18.
Efficient charge separation is crucial for solar energy conversion in semiconductor-based systems. Creating p-n junction is an effective strategy to enhance charge separation because the built-in electric field could inhibit charge recombination. However, in many situations, the high reaction barrier will limit the surface reaction rate, resulting in poor carrier utilization of the p-n junction. Here, with carefully designed cocatalyst loading, we successfully overcome the limitation and obtain the full effectiveness of the p-n junction. When used for photocatalytic water splitting, the well-designed catalyst exhibits excellent photocatalytic activity, with a hydrogen evolution rate as high as 13.2 mmol h?1 g?1, which is 18 times higher than that of the pristine p-n junction. Further investigation reveals that the enhancement should be attributed to the synergistic effect between cocatalyst and p-n junction, with the cocatalyst improves reaction rate on the surface and the p-n junction accelerates charge separation in the bulk simultaneously. This work provides an effective strategy to modify the surface properties of p-n junction through cocatalysts-loading for efficient photocatalytic hydrogen evolution.  相似文献   

19.
Electrochemical water splitting for hydrogen production is a promising solution for the production of renewable and environmentally friendly energy sources, but it is hindered by the sluggish kinetic process of oxygen evolution reaction (OER). Here, a novel hierarchical core-shell nanoarray NiCo/Ni/CuO/CF was synthesized by assembling Ni–Co hydroxide nanosheets directly on the metallic nickel coated CuO nanowires, as a highly efficient electrocatalyst for alkaline OER. This NiCo/Ni/CuO/CF anode exhibited low overpotentials of 246 mV and 286 mV at current densities of 10 mA cm−2 and 100 mA cm−2, respectively, and a small Tafel slope of 37.9 mV dec−1. Moreover, NiCo/Ni/CuO/CF showed robust durability at least 60 h at a current density of 100 mA cm−2. Detailed investigations verified that the unique nanosheets/nanowires architecture with high conductivity metallic nickel layer can expand the exposure of active sites and accelerate the transport of electrons.  相似文献   

20.
Catalyst selection, deposition method and substrate material selection are essential aspects for the design of efficient electrodes for fuel cells. Research is described to identify a potential catalyst for hydrogen peroxide reduction, an effective catalyst deposition method, and supporting material for a direct borohydride/hydrogen peroxide fuel cell. Several conclusions are reached. Using Pourbaix diagrams to guide experimental testing, gold is identified as an effective catalyst which minimizes gas evolution of hydrogen peroxide while providing high power density. Activated carbon cloth which features high surface area and high microporosity is found to be well suited for the supporting material for catalyst deposition. Electrodeposition and plasma sputtering deposition methods are compared to conventional techniques for depositing gold on diffusion layers. Both methods provide much higher power densities than the conventional method. The sputtering method however allows a much lower catalyst loading and well-dispersed deposits of nanoscale particles. Using these techniques, a peak power density of 680 mW cm−2 is achieved at 60 °C with a direct borohydride/hydrogen peroxide fuel cell which employs palladium as the anode catalyst and gold as the cathode catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号