首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Severe accident in a water-cooled nuclear power plant may lead to the production and release of hydrogen. If hydrogen forms flammable gas with air and steam in the containment, it may trigger more serious hydrogen explosion accident, threaten the integrity of the equipment and the containment. The behavioral characteristics of hydrogen under severe accident conditions become primarily responsible for the assessment of combustion risk. This review paper first identifies and describes various key physical phenomena associated to hydrogen behavior in the containment during a severe accident from four main aspects, including the source of hydrogen, hydrogen transport, combustion, and risk mitigation. The typical release process of hydrogen, the combustion limits of hydrogen and main risk mitigation measures are clarified comprehensively. Moreover, representative experimental facilities, related tests and key conclusions are introduced emphatically, which can provide specific guidance for future and ongoing related experimental research. Additionally, through the analysis of corresponding typical simulation studies based on LP method and CFD method, numerical methods suitable for various key phenomena are summarized and recommended. Currently, associated models realized in codes have limitations for predicting hydrogen behavior under certain conditions, which are mainly derived from the coupling effect of complex factors such as condensation, jets, and flame propagation, etc. The applicability and uncertainty of the models in these situations still need to be further evaluated and developed.  相似文献   

2.
Progress of severe accident (SA) can be divided into core degradation and post core meltdown. An important phenomena during severe accidents is the hydrogen generation from exothermal reaction between oxidation of core components, and molten core concrete interaction (MCCI). During the severe accidents, a large amounts of hydrogen is produced, deflagrated and consequently the containment integrity is violated. Therefore, the main objectives of this study is to highlight the source of hydrogen production during SA. First, a thorough literature review and main sources of hydrogen production, hydrogen reduction systems are introduced and discussed. Based on the available results, the amount of produced hydrogen in a typical pressurized water reactor (PWR) and a boiling water reactor (BWR) are estimated to be 1000 and 4000 kg, respectively during in-vessel phase. The average rate of hydrogen production is about 1 kg/s during reflooding of a degraded core. Also, about 2000 kg hydrogen is produced during MCCI for a PWR. The lower and upper range of hydrogen required to initiate combustion is 4.1 and 74 vol percent, respectively. In this paper a review is provided of what has been done in the literature with regard to hydrogen generation in severe accidents of nuclear power plants. In addition, the review identifies the literature gaps and underlines the need of developing a systematic hydrogen management strategy. A hydrogen management strategy is proposed in order to maintain the containment integrity against the probable combustion or hydrogen explosion loads.  相似文献   

3.
The objective of the presented work is to develop an efficient and validated approach based on a multi-dimensional computational fluid dynamics (CFD) code for predicting turbulent gaseous dispersion, conjugated heat and mass transfer, multi-phase flow, and combustion of hydrogen mixtures. Applications of interest are accident scenarios relevant to nuclear power plant safety, renewable energy systems involved in hydrogen transport, hydrogen storage, facilities operating with hydrogen, as well as conventional large scale energy systems involving combustible gases. All model development is conducted within the framework of the high-performance scientific computing software GASFLOW-Multi-Physics-Integration (MPI). GASFLOW-MPI is the advanced parallel version of the GASFLOW sequential code with many newly developed and validated models and features. The code provides reliability, robustness and excellent parallel scalability in predicting all-speed flow-fields associated with hydrogen safety, including distribution, turbulent combustion and detonation. In the meanwhile, it has been well verified and validated by many international blind and open benchmarks.The recently developed combustion models in GASFLOW-MPI code are based on the transport equation of a reaction progress variable. The sources consist of turbulence dominated and chemistry kinetics dominated terms. Models have been implemented to compute the turbulent burning velocity for the turbulence controlled combustion rate. One-step and two-step models are included to obtain the chemical kinetics controlled reaction rate. These models, combined with the efficient and verified all-speed solver of the GASFLOW-MPI code, can be used for simulations of deflagration, detonation and the important transition processes like flame acceleration (FA) and deflagration-to-detonation-transition (DDT), without additional need for expert judgment and intervention. It should be noted that the major goal is to develop a reliable and efficient numerical tool for large-scale engineering analysis, instead of resolving the extremely complex physical phenomena and detailed chemistry kinetics on microscopic scales. During the course of this development, new verification and validation studies were completed for phenomena relevant to hydrogen-fueled combustion, such as shock wave capturing, premixed and non-premixed turbulent combustion with convective, conductive and radiation heat losses, detonation of unconfined hydrogen–air mixtures, and confined detonation waves in tubes. Excellent agreements between test data and model predictions support the predictive capabilities of the combustion models in GASFLOW-MPI code. In Part II of the paper, the newly developed CFD methodology has been successfully applied to a first analysis of hydrogen distribution and explosion in the Fukushi Daicchi Unit 1 accident.The major advantage of GASFLOW-MPI code is the all-speed capability of simulating laminar and turbulent distribution processes, slow deflagration, transition to fast hydrogen combustion modes including detonation, within a single scientific software framework without the need of transforming data between different solvers or codes. Since the code can model the detailed heat transfer mechanisms, including convective heat transfer, thermal radiation, steam condensation and heat conduction, the effects of heat losses on hydrogen deflagrations or detonations can also be taken into account. Consequently, the code provides more accurate and reliable mechanical and thermal loads to the confining structures, compared to the overly conservative results from numerical simulations with the adiabatic assumptions.Predictions of flame acceleration mechanisms associated with turbulent flames and flow obstacles, as well as DDT modeling and their comparisons to available data will be presented in future papers. A structural analysis module will be further developed. The ultimate goal is to expand the GASFLOW-MPI code into an integral high-performance multi-physics simulation tool to cover the entire spectrum of phenomena involved in the mechanistic hydrogen safety analysis of large scale industrial facilities.  相似文献   

4.
The core-melt in Fukushima-Daiichi Unit 1 represents a new class of severe accidents in which combustible gas from core degradation leaked from the containment into the surrounding air-filled reactor building, formed there a highly reactive gas mixture, and exploded 25 h after begin of the station black-out. Since TMI-2 hydrogen safety research and management has focussed on processes and counter-measures inside the containment but the reactor building remained unprotected against hydrogen threats. The code GASFLOW-MPI is currently under development to simulate hydrogen behaviors, including distribution and combustion, for scenarios with containment leakage.This paper describes a first analysis of the hydrogen explosion in Unit 1. It investigates gas dispersion in the reactor building, assuming a leak at the drywell head flange, shows the evolution of a stratified, inhomogeneous H2–O2–N2–steam mixture in the refueling bay, simulates the combustion of the reactive gas mixture, and predicts pressure loads to walls and internal structures of the reactor building. The blast wave propagated essentially sideways, which explains why all side walls were blown out and the ceiling just collapsed onto the floor of the refueling bay. The blast wave propagation into the free environment was also simulated. The over-pressure amplitudes are sufficiently high to cause damage to adjacent buildings and to injure people. The hitherto existing presumption that the blow-out panel of Unit 2 was removed by the Unit 1 explosion can be confirmed which likely prevented a hydrogen explosion in the Unit 2.GASFLOW-MPI provides validated models for the integral simulations of leakage related core-melt scenarios. Furthermore, the code contains extensively tested submodels for catalytic recombiners, igniters and burst foils, which allow design of new hydrogen risk mitigation systems for currently unprotected spaces in reactor buildings.  相似文献   

5.
The article deals with the investigation of the combustion of aluminum bulk samples in water vapor, an aqueous solution of hydrogen peroxide (33.1 wt%), and water-oxygen mixture at uniform heating of the reactor (1 K/min) up to 773 K. It is revealed that the major portion of hydrogen peroxide is decomposed directly in aqueous solution. The resulting oxygen, as well as oxygen added to the water, provided oxidation of only a part of hydrogen (≈25%) released during the complete oxidation of aluminum by water. The time dependences of the reactants’ temperature and pressure, as well as the temperature corresponding to the onset of the H2 release were determined. The most intense oxidation of aluminum in water vapor was noted within the temperature range of 593–769 K, as well as in a hydrogen peroxide solution at 548–693 K, and in H2O/O2 mixture at 567–742 K. It is revealed that the oxidation of hydrogen with oxygen intensifies water oxidation of aluminum to a greater extent than it follows from the heat effects of H2 oxidation. As a result of oxidation, a loose powder of aluminum oxide nanoparticles was obtained.  相似文献   

6.
Developers interested in high pressure storage of hydrogen for mobile use increasingly rely on composite cylinders for onboard storage or transport of dangerous goods. Thus, composite materials and systems deserve special consideration. History gives interesting background information important to the understanding of the current situation as to regulations, codes and standards.  相似文献   

7.
An ejector containing phase changing gas-liquid flow process acts as a popular and decisive device in multiple industrial applications, including the hydrogen production, electricity production, fuel cells, refrigeration, petroleum industry and desalination systems. However, non-condensable gas is inevitable for the usual operation of phase-changing gas-liquid ejector in the trigeneration or electrolyzer system for hydrogen production, and rarely research is concerned with this issue. In the present study, the effect of non-condensable gas contained in the condensable gas on the characteristics of gas-centered water ejector is presented, with steam, water and air acting as the gas, liquid and non-condensable gas, respectively. Experimentally, the flow rate of steam is controlled to be 1.45 g/s with an absolute pressure of 120 kPa, the air flow rate varies from 0 to 0.14 g/s, resulting in a non-condensable gas concentration ranging from 0 to 9%, and the resulted water flow rate at 100 kPa and 282.15 K changes from 34.7 to 37.3 g/s. Combined with the numerical methods, the performance of ejector expressed in ejected water flow rate was found to increase firstly with a small amount of non-condensable gas, and decrease when the non-condensable gas reaches a certain amount. In addition, the distributions of multiple local flow parameters including pressure, condensation rate and gas volume fraction, velocity and temperature inside the ejector were shown for different non-condensable concentration, by which the mechanism for the change of ejector performance under varying non-condensable concentration was demonstrated. These findings are initiative and insightful for the ejector design optimization in the trigeneration system for hydrogen production and the proposed numerical models can be utilized in analysis and design of steam ejector with non-condensable gas involved.  相似文献   

8.
Experimental data obtained for hydrogen mixtures in a room-size enclosure are presented and compared with data for propane and methane mixtures. This set of data was also used to develop a three-dimensional gasdynamic model for the simulation of gaseous combustion in vented enclosures. The experiments were performed in a 64 m3 chamber with dimensions of 4.6 × 4.6 × 3.0 m and a vent opening on one side and vent areas of either 2.7 or 5.4 m2 were used. Tests were performed for three ignition locations, at the wall opposite the vent, at the center of the chamber or at the center of the wall containing the vent. Hydrogen-air mixtures with concentrations close 18% vol. were compared with stoichiometric propane-air and methane-air mixtures. Pressure data, as function of time, and flame time-of-arrival data were obtained both inside and outside the chamber near the vent. Modeling was based on a Large Eddy Simulation (LES) solver created using the OpenFOAM CFD toolbox using sub-grid turbulence and flame wrinkling models. A comparison of these simulations with experimental data is discussed.  相似文献   

9.
Hydrogen as potential engine fuel can appear either as a single gas or as a component in processing gases e.g. syngas, hythane and coke gas. The research in this paper investigates impact of combustible mixture dilution on abnormal combustion called knock in the reciprocating internal combustion engine. Dilution can be realized by either exhaust gas recirculation (EGR) or making the combustible mixture lean. Novelty of this work is a new metrics defined as dilution ratio, which makes it possible to compare knock reduction caused by either EGR or leaning the air-gas mixture to the engine. Two gaseous fuels were investigated: hydrogen and coke gas with 65% hydrogen. Conclusion based on the proposed dilution ratio states that, for hydrogen as the fuel, applying EGR is more effective in knock reduction than making the mixture lean. It was found that EGR strategy in the hydrogen fueled engine can reduce knock intensity from initial 40 kPa–20 kPa, whereas by leaning the mixture to the same dilution ratio, the knock is reduced to approximately 28 kPa. With respect to coke gas, it is proved that both EGR and lean mixtures influence on knock reduction at the same strength.  相似文献   

10.
Transport systems perform vital societal functions, but in their present state cannot be considered “sustainable”. One of the most controversially discussed long-term solutions to climate change and air emission externalities is the introduction of hydrogen as an energy fuel and fuel cell vehicles. In this paper, we integrate the two debates on the sustainability of today's transport systems and on the opportunities, threats and possible transition paths towards a “hydrogen economy” in road transport. We focus our analysis on developed countries as well as the specific needs of the fast growing markets for car travel in the emerging economies. We conclude that the use of hydrogen can significantly reduce CO2 emissions of the transport sector, even if taking into account tailpipe and upstream emissions as well as alternative technology developments. Moreover, local air pollutants can be reduced up to 80%. Possible negative impacts, including accident risks, nuclear waste or increased biomass demand, need to be benchmarked against these benefits. Thus, we highlight the need for integrated energy and transport policies and argue for more reflexive and inclusive societal debate about the impacts and beneficiaries of hydrogen transport technologies.  相似文献   

11.
Hydrogen fires may pose serious safety issues in vented compartments of nuclear reactor containment and fuel cell systems under hypothetical accidents. Experimental studies on vented hydrogen fires have been performed with the HYKA test facility at Karlsruhe Institute of Technology (KIT) within Work Package 4 (WP4) - hydrogen jet fire in a confined space of the European HyIndoor project. It has been observed that heat losses of the combustion products can significantly affect the combustion regimes of hydrogen fire as well as the pressure and thermal loads on the confinement structures. Dynamics of turbulent hydrogen jet fire in a vented enclosure was investigated using the CFD code GASFLOW-MPI. Effects of heat losses, including convective heat transfer, steam condensation and thermal radiation, have been studied. The unsteady characteristics of hydrogen jet fires can be successfully captured when the heat transfer mechanisms are considered. Both initial pressure peak and pressure decay were very well predicted compared to the experimental data. A pulsating process of flame extinction due to the consumption of oxygen and then self-ignition due to the inflow of fresh air was captured as well. However, in the adiabatic case without considering the heat loss effects, the pressure and temperature were considerably over-predicted and the major physical phenomena occurring in the combustion enclosure were not able to be reproduced while showing large discrepancies from the experimental observations. The effect of sustained hydrogen release on the jet fire dynamics was also investigated. It indicates that heat losses can have important implications and should be considered in hydrogen combustion simulations.  相似文献   

12.
The paper presents a numerical investigation of thermal characteristics of oxyfuel combustion in an oxygen transport reactor (OTR). The reactor is made of a combustion chamber of tubular shape and surrounded by an annular air flow compartment. The walls of the combustion chamber are made of dense, nonporous, mixed‐conducting ceramic membranes that only allow oxygen permeation from the annular air compartment into the combustion chamber. A mixture of CO2 and CH4 (sweep gas) enters the reactor from one side and mixes with the oxygen permeating through the ion transport membrane. The resulting combustion products (composed of H2O and CO2) are discharged from the other side of the reactor. The modeling of the flow process is based on a numerical solution of the conservation equations of mass, momentum, energy and species in the axi‐symmetric flow domain. The membrane is modeled as a selective layer in which the oxygen permeation depends on the prevailing temperatures as well as the oxygen partial pressure at both sides of the membrane. The comparison between reactive and separation‐only OTR units showed that combining reaction and separation increases significantly O2 permeation rate to about 2.5 times under the assumptions given herein. Uniform axial temperature of about 1250 K is achieved in most of the reactor length with high CH4 conversion of 75% to 35% for CH4/CO2 mass ratio ranging from 0.5/0.5 to 1.0/0. Since the thermal resistance of these membranes is low, the heat of reaction is mostly transferred to the air side with a portion used to heat the O2 permeating flux. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Methane/hydrogen combustion represents a concrete solution for the energy scenario to come. Indeed, the addition of hydrogen into the natural gas pipeline is one of the solutions foreseen to reduce CO2 emissions. Nevertheless, the replacement of methane by hydrogen will enhance the reactivity of the system, increasing NOx emissions. To overcome this issue, non-conventional combustion technologies, such as flameless combustion represent an attractive solution. This study aims to improve our understanding of the behaviour of methane/hydrogen blends under flameless conditions by means of experiments and simulations. Several experimental campaigns were conducted to test fuel flexibility for different methane/hydrogen blends, varying the injector geometries, equivalence ratio and dilution degree. It was found that a progressive addition of hydrogen in methane enhanced the combustion features, reducing the ignition delay time and loosing progressively the flameless behaviour of the furnace. Reducing the air injector diameter or increasing the fuel lance length were found to be efficient techniques to reduce the maximum temperature of the system and NOx emissions in the exhausts, reaching values below 30 ppm for pure hydrogen. MILD conditions were achieved up to 75%H2 in molar fraction, with no visible flame structures. Additionally, RANS-based simulations were also conducted to shed further light on the effect of adding hydrogen into the fuel blend. A sensitivity study was conducted for three different fuel blends: pure methane, an equimolar blend and pure hydrogen. The effect of chemistry detail, mixing models, radiation modeling and turbulence models on in-flame temperatures and NOx emissions was also studied. In particular, it was found that the usage of detailed chemistry for NOx, coupled with an adjustment of the PaSR model, filled the gap between experiments and predictions. Finally, a brute-force sensitivity revealed that NNH is the most important route for NOx production.  相似文献   

15.
The feasibility of the steam reforming of bio-oil aqueous fraction and bio-ethanol mixtures has been studied in a continuous process with two in-line steps: thermal step at 300 °C (for the controlled deposition of pyrolytic lignin during the heating of the bio-oil/bio-ethanol feed) followed by steam reforming in a fluidized bed reactor on a Ni/α-Al2O3 catalyst. The effect of bio-ethanol content in the feed has been analyzed in both the thermal and reforming steps, and the suitable range of operating conditions (temperature and space-time) has been determined for obtaining a high and steady hydrogen yield. Higher ethanol content in the mixture feed improves the reaction indices and reduces coke deposition. Operating conditions of 700 °C and space-times higher than 0.23 gcatalyst h (gbio-oil+EtOH)−1 are suitable for attaining almost fully conversion of oxygenates (bio-oil and ethanol) and hydrogen yields above 93%, with low catalyst deactivation.  相似文献   

16.
The zirconium alloys used in nuclear industry include mainly Zr-Sn and Zr-Nb alloys of different chemical composition, microstructure and susceptibility to both hydrogen degradation and oxidation. The hypothetic nuclear accidents can create a real danger to the Zr alloys and stability of parts made of these alloys, and especially such as loss of coolant accident (LOCA) and reactivity initiated accidents (RIA). The hydrogen degradation can manifest itself in an appearance of hydride phases resulting in a substantial loss of plasticity, an increase in ductile-brittle transition, sometimes in a decrease in mechanical strength. The oxidation can prevent the hydrogen entry but at high temperatures the cracking of the oxide layer can form the easy hydrogen diffusion channels. Based on a substantial number of tests made so far and well-known thermodynamic and kinetic parameters, the general microstructure-dependent and temperature-dependent degradation model considering both hydrogen and oxidation could be elaborated.  相似文献   

17.
In this study, a dynamic and two-dimensional model for a steam methane reforming process integrated with nuclear heat production is developed. The model is based on first principles and considers the conservation of mass, momentum and energy within the system. The model is multi-scale, considering both bulk gas effects as well as spatial differences within the catalyst particles. Very few model parameters need to be fit based on the design specifications reported in the literature. The resulting model fits the reported design conditions of two separate pilot-scale studies (ranging from 0.4 to 10 MW heat transfer duty). A sensitivity analysis indicated that disturbances in the helium feed conditions significantly affect the system, but the overall system performance only changes slightly even for the large changes in the value of the most uncertain parameters.  相似文献   

18.
In order to analyze the effects of the spray activation on the behavior of steam and hydrogen which are produced in the reactor vessel and released into the containment of the APR1400 nuclear power plant during hypothetical severe loss-of-coolant accidents (LOCA), the 3-dimensional CFD code GASFLOW was used. For the two-phase flow with a gas mixture and spray droplets, GASFLOW solves a homogeneous two-phase model which was validated in this study by simulating one of the TOSQAN experiments. The results of the GASFLOW analyses for the LOCAs in the APR1400 show that the spray system can affect the hydrogen distributions in the containment by condensing the steam and it is important to control the spray system carefully during an accident from a hydrogen safety aspect.  相似文献   

19.
Development of nuclear energy and hydrogen energy both as renewable energy open up a vast range of prospects. The scheme for hydrogen generation station in nuclear power plant has been carried out in china. However, Nuclear Energy is expected to encourage a safety culture that prevents serious accidents while dispersion of hydrogen from a container produces a risk of combustion. The dispersion and behavior of hydrogen production plant attached with nuclear power plant are still poorly understood. In this paper, a dispersion of hydrogen model is established and is calculated under two typical condition with corrected ideal gas state equation. The flammability of hydrogen after dispersion is studied. The range of flammability of dispersion of hydrogen production plant with different pressures, positions and temperatures is obtained. This work could contribute to the marginal hydrogen safety design for hydrogen production station and lay the foundation for the establishment of a safe distance standard that it's necessary to prevent hydrogen explosion.  相似文献   

20.
A two phase biomass char steam gasification kinetic model is developed in a bubbling fluidized bed with nuclear heat as source of energy. The model is capable of predicting the temperature and concentration profiles of gases in the bubble, emulsion gas and solid phases. The robust model calculates the dynamic and steady state profiles, as well as the complex parameters of fluidized bed. Three pilot scale gasifiers were simulated in order to see the effect of the H/D ratio and the bed heating dynamics in the gasification kinetics, these parameters are found to be really important in order to enhance the water-gas shift reaction, and consequently, the hydrogen production. For the system modeled, hydrogen is the principal product of the steam-only gasification, as reported in the literature data. The carbon dioxide yield seems to be smaller than the ones in other works, but these differences are due principally to the energy source (no combustion is conducted) and that char (no oxygen in the solids) was used as the carbon source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号