首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Herein, we fabricated bifunctional, noble metal-free, highly efficient nickel/nickel oxide on reduced graphene oxide (Ni/NiO@rGO) by chemical synthesis approach for electrochemical water splitting reaction. Its structural and morphological characterization using thermogravimetric analysis (TGA), transmission electron microscopy (TEM), field emission scanning electron microscope (FESEM), energy dispersive analysis of X-ray (EDAX) and X-ray diffraction (XRD) represents, Ni/NiO@rGO is having Ni/NiO NPs ∼10 nm (±2 nm) on graphene oxide with face-centered cubic (FCC) crystal structure. Moreover, the presence of Ni/NiO (2.26%), O (6.56%), N (0.74%) and C (90.44%) from EDAX analysis further confirms the formation of Ni/NiO@rGO and it also supported by FTIR studies. This nanocatalyst is examined further for electrocatalytic water splitting reactions (HER and OER). It demonstrated low overpotential 582 mV to achieve current density at 10 mA cm−2 and smaller Tafel slope of 63 mV dec−1 obtained in 0.5 M H2SO4 towards HER. Also, at the other end at onset potential of 1.6 V vs. RHE towards OER. It demonstrated low overpotential 480 mV to achieve current density at 10 mA cm−2 and smaller Tafel slope of 41 mV dec−1 in 0.5 M KOH towards OER observed. Hydrogen fuel is eco-friendly to the environment and noteworthy performance of earth-saving reactions.  相似文献   

2.
Developing highly active, stable and sustainable electrocatalysts for overall water splitting is of great importance to generate renewable H2 for fuel cells. Herein, we report the synthesis of electrocatalytically active, nickel foam-supported, spherical core-shell Fe-poly(tetraphenylporphyrin)/Ni-poly(tetraphenylporphyrin) microparticles (FeTPP@NiTPP/NF). We also show that FeTPP@NiTPP/NF exhibits efficient bifunctional electrocatalytic properties toward both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). Electrochemical tests in KOH solution (1 M) reveal that FeTPP@NiTPP/NF electrocatalyzes the OER with 100 mA cm−2 at an overpotential of 302 mV and the HER with 10 mA cm−2 at an overpotential of 170 mV. Notably also, its catalytic performance for OER is better than that of RuO2, the benchmark OER catalyst. Although its catalytic activity for HER is slightly lower than that of Pt/C (the benchmark HER electrocatalyst), it shows greater stability than the latter during the reaction. The material also exhibits electrocatalytic activity for overall water splitting reaction at a current density of 10 mA cm−2 with a cell voltage of 1.58 V, along with a good recovery property. Additionally, the work demonstrates a new synthetic strategy to an efficient, noble metal-free-coordinated covalent organic framework (COF)-based, bifunctional electrocatalyst for water splitting.  相似文献   

3.
NiA and NiX zeolites were prepared and characterised using XRD, FTIR and SEM, and subsequently tested as electrodes for hydrogen (HER) and oxygen (OER) evolution reactions in alkaline media. Linear sweep voltammetry and chronoamperometry techniques showed that NiA has higher catalytic activity for these two reactions, as evidenced by higher current densities, which can be correlated with a higher weight fraction of Ni in this electrocatalyst than in the NiX and with its higher conductivity. HER and OER kinetic parameters, including Tafel slope, exchange current density and apparent activation energy were evaluated. Electrochemical impedance spectroscopy analysis yielded values of the resistance of the solution, charge transfer and mass transfer, as well as double layer capacitance and pseudo-capacitance of the working electrode, at different potentials and temperatures. Unlike the HER, during which the mass transfer resistance of the adsorbed intermediate is dominant in the case of NiA, the OER impedance response is controlled by the charge transfer process itself at the potentials of interest for these process. The overall resistance related to the HER is lower for NiA than for NiX.  相似文献   

4.
To promote Ni electrode performance during water splitting, a novel coating process, High pressure cold spray, is applied to prepare electrodes from blended Ni + Al powder. By controlling Al fraction, electrodes are obtained with varied microstructure. SEM and EDX are implemented to check the micromorphology of electrodes. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) are performed to estimate the effect of Al addition on electrode performance. Resultantly, significant improvement of electrode performance is achieved by increasing the fraction of Al from 10 vol% to 20 vol%. The obtained coatings are found with numerous pores owing to the removal of Al during the activation. By applying electrochemical test, the HER of all samples are dominated by Volmer step, and sample N20A is found with the highest active surface area. Thus, sample N20A exhibits the highest electro-catalytic activity to HER of alkaline water electrolysis.  相似文献   

5.
It is great important to develop and explore a non-precious bifunctional electrocatalyst with high efficiency and good stability for Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER) in alkaline electrolyte. Herein, a three-dimensional (3D) needle-like MoS2/NiS heterostructure supported on Nickel Foam (NF) (MoS2/NiS/NF) is synthesized by a simple hydrothermal method for the first time, which can act as a good bifunctional electrocatalyst for overall water splitting. As expected, the optimal MoS2/NiS/NF exhibits excellent catalytic performance with a low overpotential of 87 and 216 mV at 10 mA cm−2 for HER and OER in 1 M KOH electrolyte, respectively, accompanied by good cycle stability. Furthermore, the MoS2/NiS/NF as bifunctional electrocatalyst in an electrolyzer shows high efficiency with a cell voltage of 1.5 V at 10 mA cm−2, as well as superior durability. The present work may open a new direction to design and develop a non-precious bifunctional electrocatalyst with excellent catalytic activity for water splitting in the future.  相似文献   

6.
For the sake of sustainable development, water splitting without other pollutants has been a candidate technology in green energy. Due to the low efficiency of water splitting, innovative breakthroughs are desirable to improve efficiency significantly. Nowadays, the rational design of non-precious metal-based robust bifunctional catalysts is considered to be a feasible way to promote both the cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER). Herein, we proposed a vanadium doped CoP nanorods array catalyst grown on carbon cloth (V–CoP NRs/CC) as a bifunctional electrode material. When V–CoP NRs/CC employed as both anode and cathode materials, it only demands low cell voltages of 1.491 V and 1.606 V to drive a current density of 10 mA cm?2 (j10) and 50 mA cm?2 (j50) in 1 M KOH alkaline electrolyte. Especially, V–CoP NRs/CC can maintain its outstanding electrocatalytic performance for more than 40 h at j50 in overall water splitting.  相似文献   

7.
Developing earth-abundant and highly active bifunctional electrocatalysts are critical to advance sustainable hydrogen production via alkaline water electrolysis but still challenging. Herein, heterojunction hybrid of ultrathin molybdenum disulfide (MoS2) nanosheets and non-stoichiometric nickel sulfide (Ni0.96S) is in situ prepared via a facile one-step hydrothermal strategy, followed by annealing at 400 °C for 1 h. Microstructural analysis shows that the hybrid is composed of intimate heterojunction interfaces between Ni0.96S and MoS2 with exposed active edges provided by ultrathin MoS2 nanosheets and rich defects provided by non-stoichiometric Ni0.96S nanocrystals. As expected, it is evaluated as bifunctional electrocatalysts to produce both hydrogen and oxygen via water electrolysis with a hydrogen evolution reaction (HER) overpotential of 104 mV at 10 mA cm−2 and an oxygen evolution reaction (OER) overpotential of 266 mV at 20 mA cm−2 under alkaline conditions, outperforming most current noble-metal-free electrocatalysts. This work provides a simple strategy toward the rational design of novel heterojunction electrocatalysts which would be a promising candidate for electrochemical overall water splitting.  相似文献   

8.
Synthesizing efficient and affordable electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remains a crucial problem on the way to practical applications for producing clean H2 fuel. Herein, high-efficiency and stable transition metal based electrocatalysts Ni0.85Se-1, Ni0.85Se-2 and Ni0.85Se-3 materials with different morphological characteristics were derived via a one-step hydrothermal route using the Ni(OH)2 and metal-organic framework (Ni-BDC and Ni-BTC) as precursors, respectively. The results showed that Ni0.85Se-2 exhibited excellent electrocatalytic activity. Subsequently, introducing carbon nanomaterials (RGO and CNTs) to form Ni0.85Se/RGO/CNTs nanocomposite material further improves the catalytic activity owing to high conductivity. The resulting Ni0.85Se/RGO/CNTs nanocomposites electrocatalyst showed a low overpotential of 232 mV and 165 mV and a low Tafel slope of 64 mV dec?1 and 98 mV dec?1 when the current density was 10 mA cm?2 for OER and HER, respectively. In addition, the Ni0.85Se/RGO/CNTs nanocomposites were used as an anode and cathode of the water electrolysis device and the overall water splitting performance was investigated. The results show just a voltage of 1.59 V was required when the current density was 10 mA cm?2 and good overall water splitting stability for 20 h. The outstanding electrocatalytic performance of Ni0.85Se/RGO/CNTs is mostly due to its noticeable porous structure, the high conductivity and the large surface area that came from RGO and CNTs.  相似文献   

9.
The present study is about the fabrication of an efficient photo-/electrocatalyst, prepared via in-situ hydrothermal coupling of ZnO with g-C3N4. The results prove this electrocatalyst as suitable band structure semiconductor. The crystalline nature and related morphological parameters are controlled by optimized hydrothermal and calcination temperatures conditions. A series of physicochemical characterization are applied to inquire the crystalline structure, surface morphology, optical capabilities and charge transportation properties. Results revealed that the sample acts as excellent electrocatalyst with OER current density at 10 mAcm−2 @ 335 mV and the HER at 100 mAcm−2 @ −225 mV. While upon illuminations its catalytic properties further enhance at OER 10 mAcm−2 @ 326 mV and for HER current density of 100 mAcm−2 @ −167 mV. It can be seen from the present study that g-C3N4 play gigantic role in enhancing the catalytic property of ZnO and hence it leads to a relationship between hierarchical features and photo-/electrochemical activity for water splitting.  相似文献   

10.
To develop earth-abundant and cost-effective catalysts for overall water splitting is still a major challenge. Herein, a unique “raisins-on-bread” Ni–S–P electrocatalyst with NiS and Ni2P nanoparticles embedded in amorphous Ni(OH)2 nanosheets is fabricated on Ni foam by a facile and controllable electrodeposition approach. It only requires an overpotential of 120 mV for HER and 219 mV for OER to reach the current density of 10 mA cm−2 in 1 M KOH solution. Employed as the anode and cathode, it demonstrates extraordinary electrocatalytic overall water splitting activity (cell voltage of only 1.58 V @ 10 mA cm−2) and ultra-stability (160 h @ 10 mA cm−2 or 120 h @50 mA cm−2) in alkaline media. The synergetic electronic interactions, enhanced mass and charge transfers at the heterointerfaces facilitate HER and OER processes. Combined with a silicon PV cell, this Ni–S–P bifunctional catalyst also exhibits highly efficient solar-driven water splitting with a solar-to-hydrogen conversion efficiency of 12.5%.  相似文献   

11.
It is of great significance to develop a highly active, durable and inexpensive bifunctional electrocatalyst for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, we report a tungsten-doped nickel phosphide nanosheets based on carbon cloth (W–Ni2P NS/CC) as an efficient bifunctional catalyst through simple hydrothermal and phosphorization for overall water splitting in 1 M KOH. The W–Ni2P NS/CC exhibits excellent electrochemical performance with low overpotentials for HER (η10 = 71 mV, η50 = 160 mV) and OER (η20 = 307 mV, η50 = 382 mV) in 1 M KOH, as well as superior long-term stability. Moreover, W–Ni2P NS/CC as a bifunctional catalyst reveals remarkable activity with a low voltage of 1.55 V to reach a current density of 20 mA cm−2. This work provides a viable bifunctional catalyst for the overall water splitting.  相似文献   

12.
To fulfill the growing demand for green H2 fuels, low-cost, efficient, and stable bifunctional electrocatalysts must be developed. Herein, a hierarchical CuO@Cu3P/CF nanowire core-shell heterostructure with transferable active centers was developed for a bifunctional electrocatalyst with high activity. In this system, the transfer of electrochemically active centers between Cu3P and CuO is used to facilitate the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), respectively. Particularly, Cu3P acts as the active center for HER, while the active center shifts to CuO for OER reaction, and Cu3P acts as a co-catalyst to improve the conductivity of the system. Benefit from superhydrophilicity's high electrochemical surface area and synergistic effect of CuO core and Cu3P shell, and CuO@Cu3P/CF shown significant catalytic activity for hydrogen or oxygen evolution, requiring low overpotentials of 144 and 267 mV to achieve a current density of 10 mA cm?2. In addition, the assembled CuO@Cu3P/CF-based electrolyzer exhibit excellent overall water splitting performance with a low operating voltage of 1.75 V at 10 mA cm?2 and a negligible decrease in catalytic activity. This gives encouraging evidence for the utility of our catalysts in application areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号