首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The hydrogen due to its high mass energy density is a new renewable, economically viable and clean resource. The most eco-friendly and economical approaches for the generation of hydrogen through hydrogen evolution is electrochemical water splitting. The two-dimensional (2D) nanomaterials have been recently found as potential candidates as non-noble metal catalyst for hydrogen evolution. In this work, we have systematically studied the structural and electronic properties of the newly predicted hexagonal-aluminium carbide monolayer (h-AlC ML) under the framework of dispersion-corrected density functional theory (DFT) calculations. The calculated electronic total density of states (TDOS) of h-AlC ML predict its metallic nature in contrast to other polar honeycomb 2D materials which are either semiconducting or semimetallic. The metallic behavior of h-AlC monolayer which motivates us to investigate its HER activity results due to the presence of delocalized charge density near Fermi level. Thus, we have investigated the HER activity of h-AlC ML by calculating hydrogen (H) adsorption energy (ΔEH) and Gibbs free energy (ΔGH) at three different sites of the 3 × 3 and 4 × 4 supercells of h-AlC ML; top of carbon atom (EH-C), top of aluminium atom (EH-Al) and hollow site (EH-Hollow). Our results show that the hollow site is most catalytically active site in both supercells of h-AlC ML. We believe that our results will inspire experimentalists to fabricate this new 2D material for achieving the desired range of HER activity.  相似文献   

2.
Many transition metal di-selenides such as MoSe2 and WSe2 show good catalytic activity on their edges with limited active orientations. These metal di-selenides are actively being used as target material for increasing the number of electrocatalytic active sites and in turn to improve the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activities by increasing the ratio of edges to the basal plane. In present work, we have studied the activity of pristine and alkali atoms (Na, K and Ca) doped-SnSe2 for HER and OER catalyst. The state-of-art density functional theory (DFT) based computations are performed for estimating the catalytic activity of the pristine and doped SnSe2 by means of evaluating the adsorption and Gibbs free energies subjected to hydrogen and oxygen adsorption. Further, to get better prediction of adsorption energy on the individual catalytic surface, we have included the dispersion correction term to exchange-correlation functional. Results show that the pristine SnSe2 is not a good HER catalyst when hydrogen is adsorbed on its basal plane. However, edge-sites show the good hydrogen adsorption and indicates that the edges of SnSe2 are the most preferential site for hydrogen adsorption. As far as the catalytic activity of SnSe2 with dopants is concerned, the Na-doped SnSe2 among all shows the best catalytic activity over its edge-site; whereas K and Ca doped SnSe2 show basal plane as preferred catalytic site. It is interesting to note that the disadvantage of low catalytic activity on basal plane of SnSe2 can be improved by selective doping of alkali metals.  相似文献   

3.
Ni3S2 is an emerging cost-effective catalyst for hydrogen generation. However, a large amount of reported Ni3S2 was synthesized via multi-step approaches and few were fabricated based on the one-step strategies. Herein, we report a facile one-step low-temperature synthesis of Ni3S2 nanowires (NWs). In this strategy, a resin containing sulfur element is recommended as a sulfur resource to form Ni3S2 NWs. It presents a plausible explanation on the vapor–solid–solid (VSS) growth mechanism according to the results of this experiment and reported in literature that has been published. The Ni3S2 NW exhibits a potential ∼199 mV at 10 mA cm−2 and the long-term durability over 30 h at 20 mA cm−2 HER operation, better than other reported Ni3S2. More importantly, according to replace transition metal foam as the initial metal, other transition metal sulfide can be readily synthesized via this original approach.  相似文献   

4.
Constructing high-performance catalyst for hydrogen evolution reaction (HER) is the effective way to eliminate energy crisis. Reasonable engineering of heterointerfaces can effectively create more active sites and promote electron transfer resulting in improvement in the catalytic activity. In this work, we synthesize the well-defined molybdenum carbides and tungsten carbides nano-heterostructure (Mo2C/W2C) by carbonization with CH4/H2 at 800 °C showing excellent HER activity, fast kinetics and electrochemical stability in both alkaline and acidic electrolytes. Mo2C/W2C requires only 140 and 132 mV overpotentials to reach catalytic current density of 10 mA cm?2 in 0.5 M H2SO4 and 1 M KOH electrolyte, respectively. Tafel slope is as low as 51 and 76 mV dec?1 in 0.5 M H2SO4 and 1 M KOH comparable to the benchmarked Pt/C. Moreover, Mo2C/W2C exhibits a superior stability with slight deterioration in HER performance after 5000 potential cycles. This work elucidates that the rational construction of heterointerfaces is favorable for design of efficient non-noble metal electrocatalyst for HER catalysis.  相似文献   

5.
Molybdenum sulfide (MoSx) has recently emerged as a promising catalyst for the hydrogen evolution reaction (HER) in water splitting that may replace the noble metal, such as platinum, as a cost-effective and high catalytic materials. It has been reported that two-dimensional structured MoSx exhibit significant amount of exposed S-edge, which can be an active electrocatalytic catalyst for hydrogen production. However, the current reports mainly focusing on the planar electrode, where the catalyst utilization and the number of active sites are limited due to the lower exposed specific surface area (SSA) of supporting electrodes. In this work, we utilize the freeze-drying method to produce a porous three-dimensional (3D) structure assembled by graphene flakes. The as-prepared 3D graphene scaffold shows high surface area, high porosity while low density, which makes it as an ideal conductive electrode for supporting of MoSx catalysts. Moreover, it was found out that the crystallinity of MoSx, controlled by thermolysis temperature of thiosalts precursor ((NH4)2MoS4), shows significantly influence the performance of HER. The optimized annealing temperature for the designed hybrid electrodes (MoSx/3D-graphene) was found to create a lot of active sites, which facilitate the electrocatalytic performance for water splitting (overpotential of 163 mV @10 mA/cm2 and a Tafel slope of 41 mV/dec). The study provides a potential material, which could pave the way for future applications of hydrogen energy.  相似文献   

6.
Transition-metal chalcogenides as the promising alternatives to noble-metal-based electrocatalysts for hydrogen evolution reaction (HER) with high activity and durability in water splitting have attracted extensive attention in recent years. Herein, CozNiySx@PPy composites with three-dimensional (3D) cauliflower-like were firstly prepared on carbon fiber paper (CFP) via a simple and efficient electrochemical reduction of elemental sulfur in the precursor of S@PPy composite coated on CFP to react with Co and Ni ions in the electrolyte. The optimum electrode, i.e., CozNiySx@PPy/CFP-6 (A-6) prepared by using an electrolyte with a Co/Ni molar ratio of 0/6, showed excellent catalytic activity (with an overpotential of 185 mV@10 mA cm−2 and a small Tafel slope of 78.13 mV dec−1) as well as long-term stability (at least 100 h) in 1 M KOH solutions. This work provides a novel way to fabricate effective and non-noble-metal electrodes for HER in water splitting.  相似文献   

7.
The development of cost-effective non-precious metal electrocatalysts is a major challenge for water splitting applications, but it is important for the realization of renewable energy systems. Alloying has proved an effective way to design metal-based electrocatalysts, and by controlling the annealing temperature, the surface morphology and crystallinity of the alloy can be tuned to control the hydrogen evolution reaction (HER) performance. In this work, with a simple coprecipitation method, we have prepared Co2FeAl alloys at different annealing temperatures (550 °C–670 °C), which exhibit excellent crystallinity and electrocatalytic performance for HER in alkaline solution. Among all conditions, the Co2FeAl alloys prepared at 620 °C shows the better crystallinity and the higher purity, and it could achieve a low overpotential of 149 mV at 10 mA cm?2 in alkaline solution. The overpotential demonstrates persistent stability with only 3 mV change after over 1000 cycles. Both density functional theory (DFT) calculations and experimental results revealed that alloying optimizes the electronic structure near the Fermi surface of the system, improving the electron transport efficiency and enhancing the catalytic activity. These Co2FeAl alloys are appealing candidates for high-performance alkaline HER electrocatalytic electrodes in water electrolysis due to their outstanding electrocatalytic properties.  相似文献   

8.
We report the electrochemical deposition (ECD) of platinum nano-islands (Pt NIs) on functionalized multi-walled carbon nanotubes (ECD Pt NIs@f-MWCNT) as an efficient electrocatalyst for the hydrogen evolution reaction (HER). Pristine MWCNT was acid treated to induce the number of oxygen functional groups on the surface and enhances the wettability. Thereafter, Pt nanoparticles (Pt Nps) were deposited by a simple electrodeposition technique on the oxygen enriched MWCNT surface. The Pt NIs@f-MWCNT has been physicochemically characterized using X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy and X-ray photoelectron Spectroscopy (XPS). The TEM analysis showed the presence of Pt NIs on MWCNT wherein, the NIs were made up of small Pt nanoclusters of ~4 nm in dimension. The electrochemical HER studies were carried out using linear sweep voltammetry (LSV), Tafel polarization and electrochemical impedance spectroscopy (EIS). An overpotential (?) of ?84 mV was obtained at a current density (j) of ?10 mA/cm2. The amount of Pt loading has been optimized through electrodeposition. Enhanced HER activity was observed with a Pt loading of 3.8 μg/cm2. In order to ascertain the durability of the catalyst, accelerated degradation test (ADT) was carried out for 10,000 cycles at a scan rate (?) of 100 mV/s. The turnover frequency (TOF) was estimated to be 6.3 s?1 at ? = ?70 mV.  相似文献   

9.
In this study, cobalt disulfide (CoS2) nanostructures are synthesized using a simple hydrothermal method. The effects of experimental parameters including cobalt precursor, reaction times, and reaction temperatures are investigated on the structure, morphology and electrocatalytic properties of CoS2 for hydrogen evolution reaction (HER). The characterization of as-prepared catalysts is performed using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and X-ray photoelectron spectroscopy (XPS). The HER efficiency of the catalysts is examined using linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) methods in 0.5 M H2SO4 solution. Furthermore, chronoamperometry (CA) is used for stability evaluation. The catalyst obtained from cobalt acetate precursor, within 24 h at 200 °C exhibits superior electrocatalytic activity with a low onset potential (139.3 mV), low overpotential (197.3 mV) at 10 mA. cm?2 and a small Tafel slope of 29.9 mV dec?1. This study is a step toward understanding the effect of experimental parameters of the hydrothermal method on HER performance and developing optimal design approaches for the synthesis of CoS2 as a common electrocatalyst.  相似文献   

10.
Accelerating the charge transfer (CT) capability of photocatalysts is an efficient way to improve the overall photocatalytic performance, yet the precise regulation of CT in photocatalyst systems is still lacking. In this paper, a series of hybrid photocatalysts composed of graphitic carbon nitride (CN) and various viologens (V) were prepared for the photocatalytic hydrogen evolution (PHE) from water splitting under visible-light irradiation. Considering the fixed energy structure of CN, the different electron-withdrawing substituents were introduced to engineer the band structure of V delicately and modulate the CT process between CN and V. It was shown that all the hybrid photocatalysts CN-x%Vy exhibited higher photocatalytic performance, of which CN–1%V3, possessing the strongest electron withdrawing group (-NO2), demonstrated the best PHE performance (3572.3 μmol g−1 h−1), exceeding 29 times over the unmodified CN. It was proposed that the introduction of V can optimize the interfacial photogenerated electron transfer (CNV→Pt) of the whole photocatalytic system effectively. We highlighted the V as an efficient chemical segment to modify semiconductors toward enhanced activity due to the following unique characteristics: (i) the unique redox ability, (ii) the easy synthetic methods for controlling the band structures precisely, and (iii) the inherent positively charged feature. This work provides a deep understanding of CT for the rational design of high-performance photocatalysts through band engineering.  相似文献   

11.
Extremely low content of Ruthenium (Ru) nanoparticles were loaded on the carbon black (Ru/C) via reducing Ru ions with silicon monoxide. The obtained Ru/C nanocomposites exhibit an exciting electrochemical catalytic activity for hydrogen evolution reaction (HER) in the oxygen-free 0.5 M H2SO4 medium. The optical one (Ru/C-2) with a low Ru amount of 2.34% shows higher activity than previously reported Ru-based catalysts. The overpotential at 10 mA cm−2 is 114 mV and the Tafel slope is 67 mV·dec−1. Ru/C-2 catalyst also has good stability. The overpotential that afford the current density of 10 mA cm−2 of 20 wt% Pt/C increased 92 mV while that of Ru/C-2 only increased 50 mV after a 30,000 s chronopotentiometry test. Furthermore, the mass activity of Ru/C-2 catalyst is even better than that of the commercial 20 wt% Pt/C when the overpotential is larger than 0.18 V. This silicon monoxide-mediated strategy may open a new way for the fabrication of high performance electrocatalysts.  相似文献   

12.
High-activity and cost-effective transition metal sulfides (TMSs) have attracted tremendous attention as promising catalysts for hydrogen evolution reaction (HER). However, a significant challenge is the simultaneous construction of abundant electrochemical active sites and the fast electronic transmission path to boost a high-efficient HER. Herein, we demonstrate a facile one-step hydrothermal preparation of MoS2 hollow nanospheres decorating Ni3S2 nanowires supported on Ni foam (NF), without any other additional template, surfactant or annealing. In this three-dimensional (3D) heterostructure, the ultrathin-layered MoS2 hollow nanospheres contribute to the promotion of the total surface area and the electrochemical active sites. Meanwhile, the Ni3S2 nanowires are beneficial to the high electrical conductivity. Consequently, the optimized MoS2/Ni3S2/NF-200-24 electrocatalyst presents an extremely superior HER activity to that of individual MoS2/NF and Ni3S2/NF. The HER overpotentials are 85 mV at 10 mA cm−2 and 189 mV at 100 mA cm−2, which are also comparable with the state-of-the-art 20% Pt/C/NF electrode at both low and high current.  相似文献   

13.
14.
Pd modified Pt over a novel support of tungsten carbide nanocrystals (the catalyst denotes as PtPd-WC/C) have been prepared by using an intermittent microwave heating (IMH) method. The as-prepared electrocatalysts are characterized by using the techniques of XRD, SEM, TEM, linear sweeping voltammetry and tested for the hydrogen evolution reaction (HER) in the acidic media. It shows a better performance for the HER on PtPd-WC/C electrocatalyst than that on Pt-WC/C electrocatalyst. In addition, these effects on the catalytic activity by changing environmental temperature and electrolyte concentration were taken into account. Kinetic study shows that the HER on the PtPd-WC/C electrocatalyst gives higher exchange current density in H2SO4 solution with high concentration, leading to a lower overpotential and facile kinetics. XRD, SEM and TEM images of PtPd-WC/C show the crystalline features of Pt, Pd and tungsten carbides and indicated the coexistence of these components.  相似文献   

15.
--Owing to its unique physicochemical properties, two-dimensional (2D) layered MoS2 has been proposed as a potential catalyst for efficient hydrogen evolution reaction (HER). However, their large-scale application is still hindered due to limited active sites, poor conductivity, and restacking during synthesis. Herein, we report a one-step hydrothermal route to grow MoS2 nanosheets on molybdenum (Mo) foil substrate followed by Au decoration as an active cocatalyst to enhance the HER performance of MoS2 nanosheets. A facile, quick, and controlled decoration of stable Au overlayer with different mass loadings was performed using a sputtering Au coating unit for different deposition times (10s, 30s, and 50s), thus paving the way for producing efficient and inexpensive HER electrocatalysts. Electrochemical studies of different Au–MoS2/Mo hybrids demonstrate that the optimized Au–MoS2/Mo-30s sample exhibits ultralow onset potential (52 ± 2 mV vs. RHE), small overpotentials of 136 ± 6 and 318 ± 3 mV (vs. RHE) at current densities of 10 and 100 mA cm?2, a small Tafel slope (46.23 ± 6 mV/dec), along with an outstanding electrochemical stability over a couple of days. Presence of metallic 1T-phase of MoS2, as well as the synergistic effect between MoS2 and Au, result in enhanced electrical conductivity, high density of active sites, large electrochemically accessible surface area, and fast charge transfer at the catalyst-electrolyte interface for boosting HER activity of the hybrid catalyst.  相似文献   

16.
The urea solution electrolysis has become more attractive than water splitting, because it not only produces clean H2 via the cathodic hydrogen evolution reaction (HER) with lower cell voltage, but also treats sewage containing urea through anodic urea oxidation reaction (UOR). However, lack of efficient electrocatalysts for HER and UOR has limited its development. Herein, hairy sphere -like Ni9S8/CuS/Cu2O composites were synthesized on nickel foam (NF) in situ by a two-step hydrothermal method. The Ni9S8/CuS/Cu2O/NF exhibited good electrocatalytic activity for both HER (?0.146 V vs. RHE to achieve 10 mA cm?2) and UOR (1.357 V vs. RHE to achieve 10 mA cm?2). Based on the bifunctional properties of Ni9S8/CuS/Cu2O/NF, a dual-electrode urea solution electrolytic cell was constructed, which only needed a low voltage of 1.47 V to reach a current density of 10 mA cm?2, and displayed a good stability during a 20-h test. In addition, the reason for the good catalytic activity of Ni9S8/CuS/Cu2O/NF was analyzed and the UOR mechanism was discussed in detail. Our research shows that Ni9S8/CuS/Cu2O/NF is a very promising low-cost dual-function electrocatalyst, which can be used for high-efficiency electrolysis of urea solution to produce hydrogen and treat wastewater.  相似文献   

17.
Pristine molybdenum disulfide (MoS2) nanostructures with 1T on 2H phase have been prepared by tuning the growth time in hydrothermal synthesis. The optimized sample has an expanded interlayer and it exhibits striking kinetic metrics with an onset potential of - 0.13 V, Tafel slope of 49 mV/decade, and an exchange current density of 3.98 × 10?3 mA, performing best among the pristine MoS2 based hydrogen evolution reaction (HER) catalysts reported so far. The edge terminated structure, together with the expanded interlayer, is believed to modify the electronic structure to enhance the conductivity of the compound. The Mott-Schottky analysis of the optimized sample indicated a decrease in band bending and an enhancement in the charge transfer. The promising HER response obtained with sufficiently low growth time and growth temperature for the pristine MoS2 nanostructures suggests a potential way to design high-performance HER catalysts based on the compound.  相似文献   

18.
Hydrogen (H2) is one of the most important fuel candidates and its low-cost production would necessitate the development of efficient electrocatalysts. In this study, we report the synthesis and evaluation of two new carbazole-containing polymers as organic photoelectrochemical (PEC) catalysts for hydrogen evolution reaction (HER). The synthesis of these new conjugated polymers, poly(N-(2-ethylhexyl)-3,6-carbazole-p-bisdodecyloxy-phenylene vinylene) (P1) and poly(N-(2-ethylhexyl)-3,6-carbazole-p-bis(2-ethylhexyloxy)-phenylene vinylene) (P2), was accomplished by the Horner–Emmons polymerization reaction and subsequently characterized by 1H NMR, FTIR, diffuse reflectance UV–vis spectroscopy (DR UV–vis), scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The optical band gaps of P1 and P2, derived from the onset absorption edge, were found to be 2.10 and 2.14 eV, respectively. The chronoamperometric (CA) measurements revealed that the photo-current density generated at ~0 V by P1 and P2, without the use of additional noble metal based cocatalysts or sacrificial electron donors, was ?1.8 and ?2.1 μA/cm2, respectively. The enhanced PEC performance of P2 was attributed due to its narrow band gap that enhanced light harvesting ability and the larger surface area which helped in minimizing charge recombination. The experimental observations were well supported by the drastic quenching of PL emission intensity of P2. The linear sweep voltammetry (LSV) measurements showed the onset potential at around ?0.3 V for both polymers. The photocurrent density difference for P2 at ?1.2 V reached to maximum value of 0.37 mA/cm2, amounting to ~25% current enhancement under illumination. Long-term stability testing via CA measurements revealed that P2 was relatively more stable than P1, which warranted its potential as photocatalyst for solar water splitting. In addition, P1 and P2 are readily soluble in common organic solvents which make them potential candidates for photovoltaic devices application.  相似文献   

19.
Seven nickel electrodes with aligned porous structure of different thicknesses (i.e., 100, 250, 400, 500, 600, 850, and 1100 μm) were fabricated via freeze casting, and the effect of the electrode thickness on hydrogen evolution reaction (HER) was experimentally studied. The polarization curves of the porous electrodes were obtained by linear sweep voltammetry (LSV) in a 1 M KOH solution. The results show that, in the lower current density zone, the overpotential decreases with the increasing thickness of the aligned porous electrode. At higher current density, the overpotential presents a relative complex variation with the electrode thickness. For a thicker porous electrode, its electrochemically active surface area (ECSA) undoubtedly increases. Nevertheless, its bubble removal ability decreases due to deeper porous channels, which adversely affects the HER performance. It is also found that while the aligned pore orientation of the electrode is parallel to gravity direction, the electrode with a thickness of 400 μm has a trade-off between the ECSA and bubble removal ability and shows optimal performance.  相似文献   

20.
Developing high-performance hydrogen evolution reaction (HER) electrocatalysts is of great significance for solving the global energy crisis. Cluster has great application potential in the field of catalysis due to their unique quantum size effect and high specific surface area. Herein, the HER catalytic performance of Cu5 cluster were regulated and optimized by doping heteroatoms. The Gibbs free energy calculation shows that the catalytic activity of Cu5Ni and Cu5Pt is comparable to that of Pt-based catalysts, and the Gibbs free energy value of Cu5C can even reach 0.005 eV, indicating its much higher catalytic performance than that of other catalysts. Thus, the catalytic activity of Cu5 clusters is optimized by doping non-metal and transition metal atoms to regulate the geometric and electronic structure of Cu5. It was found that Cu5Ni, Cu5Pt and Cu5C are potential catalysts to replace Pt-based catalysts for reducing the cost and achieving large-scale hydrogen production. This work provides a new avenue to regulate the catalytic performance of clusters, which is helpful for the further development and application of clusters in the field of catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号