首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biogas from anaerobic digestion and landfills consists primarily of CH4 and CO2. Trace components that are often present in biogas are water vapor, hydrogen sulfide, siloxanes, hydrocarbons, ammonia, oxygen, carbon monoxide and nitrogen. In order to transfer biogas into biomethane, two major steps are performed: (1) a cleaning process to remove the trace components and (2) an upgrading process to adjust the calorific value. Upgrading is generally performed in order to meet the standards for use as vehicle fuel or for injection in the natural gas grid.Different methods for biogas cleaning and upgrading are used. They differ in functioning, the necessary quality conditions of the incoming gas, the efficiency and their operational bottlenecks. Condensation methods (demisters, cyclone separators or moisture traps) and drying methods (adsorption or absorption) are used to remove water in combination with foam and dust.A number of techniques have been developed to remove H2S from biogas. Air dosing to the biogas and addition of iron chloride into the digester tank are two procedures that remove H2S during digestion. Techniques such as adsorption on iron oxide pellets and absorption in liquids remove H2S after digestion.Subsequently, trace components like siloxanes, hydrocarbons, ammonia, oxygen, carbon monoxide and nitrogen can require extra removal steps, if not sufficiently removed by other treatment steps.Finally, CH4 must be separated from CO2 using pressure swing adsorption, membrane separation, physical or chemical CO2-absorption.  相似文献   

2.
Forage radish, a winter cover crop, was investigated as a co-substrate to increase biogas production from dairy manure-based anaerobic digestion. Batch digesters (300 cm3) were operated under mesophilic conditions during two experiments (BMP1; BMP2). In BMP1, the effect of co-digesting radish and manure on CH4 and H2S production was determined by increasing the mass fraction of fresh above-ground radish in the manure-based co-digestion mixture from 0 to 100%. Results showed that forage radish had 1.5-fold higher CH4 potential than dairy manure on a volatile solids basis. While no synergistic effect on CH4 production resulted from co-digestion, increasing the radish fraction in the co-digestion mixture significantly increased CH4 production. Initial H2S production increased as the radish fraction increased, but the sulfur-containing compounds were rapidly utilized, resulting in all treatments having similar H2S concentrations (0.10–0.14%) and higher CH4 content (48–70%) in the biogas over time. The 100% radish digester had the highest specific CH4 yield (372 ± 12 L kg−1 VS). The co-digestion mixture containing 40% radish had a lower specific CH4 yield (345 ± 2 L kg−1 VS) but also showed significantly less H2S production at start-up and high quality biogas (58% CH4). Results from BMP2 showed that the radish harvest date (October versus December) did not significantly influence radish C:N mass ratios or CH4 production during co-digestion with dairy manure. These results suggest that dairy farmers could utilize forage radish, a readily available substrate that does not compete with food supply, to increase CH4 production of manure digesters in the fall/winter.  相似文献   

3.
Biogas from anaerobic digestion of biological wastes is a renewable energy resource. It has been used to provide heat, shaft power and electricity. Typical biogas contains 50–65% methane (CH4), 30–45% carbon dioxide (CO2), moisture and traces of hydrogen sulphide (H2S). Presence of CO2 and H2S in biogas affects engine performance adversely. Reducing CO2 and H2S content will significantly improve quality of biogas. In this work, a method for biogas scrubbing and CH4 enrichment is presented. Chemical absorption of CO2 and H2S by aqueous solutions in a packed column was experimentally investigated. The aqueous solutions employed were sodium hydroxide (NaOH), calcium hydroxide (Ca(OH)2) and mono-ethanolamine (MEA). Liquid solvents were circulated through the column, contacting the biogas in countercurrent flow. Absorption characteristics were examined. Test results revealed that the aqueous solutions used were effective in reacting with CO2 in biogas (over 90% removal efficiency), creating CH4 enriched fuel. H2S was removed to below the detection limit. Absorption capability was transient in nature. Saturation was reached in about 50 min for Ca(OH)2, and 100 min for NaOH and MEA, respectively. With regular replacement or regeneration of used solutions, upgraded biogas can be maintained. This technique proved to be promising in upgrading biogas quality.  相似文献   

4.
A thermophilic pilot scale anaerobic digester treating chicken litter was subjected to pulse loads of ammonia of increasing concentration. A micro gas chromatograph (μ-GC) measured CO2, CH4, N2, H2 and H2S in the biogas. In the liquid, NH4-N was measured manually, volatile fatty acids (VFA) were measured manually and with Near Infrared Spectroscopy (NIRS). Within the first 7–24 h after the pulse, the concentrations of iso-butyric and iso-valeric acid increased rapidly and were the best indicators of process stress due to ammonia pulses, confirmed by multivariate analysis. NIRS was not capable of accurate prediction of VFA iso-forms most likely due to low concentrations. Propionic acid was persistent. The ammonia pulses caused an overall decrease of biogas production. The biogas composition was not a good indicator of imbalances; little correlation with VFA measurements was observed.  相似文献   

5.
H2S is a detrimental impurity that must be removed for upgrading biogas to biomethane. H2S removal selectivity over CO2 employing catalytic oxidative absorption method and its influence factors were studied in this work. The desulfurization experiments were performed in a laboratory apparatus using EDTA-Fe as the catalyst and metered mixture of 60% (v/v) CH4, 33% (v/v) CO2 and 2000–3000 ppmv H2S balanced by N2 as the simulated biogas. It was found that for a given catalytic oxidative desulfurization system, it exists a critical pH, at which desulfurization selectivity achieves the highest. It was also observed that desulfurization selectivity increased along with the increase of chelated iron concentration, gas flow rate, and ratio of gas flow rate to liquid flow rate (G/L). This demonstrated that high selectivity and high efficiency for biogas desulfurization could both be achieved through optimizing these parameters. Specific to the desulfurization system of this work, when the gas flow rate was set as 1.1 L/min, after optimizing the above mentioned parameters, i.e. EDTA-Fe concentration of 0.084 mol/L, absorption solution pH of 7.8, and G/L of 55, the desulfurization selectivity factor reached 142.1 with H2S removal efficiency attained 96.7%.  相似文献   

6.
Biogas dry reforming is a promising technology for converting biomass into high-value products and reducing greenhouse gas emissions. Recent improvements to biogas reforming have mainly focused on the preparation of functional catalysts; however, little attention has been paid to the effects of catalyst configuration in plug flow reactors. In this study, a Ni/MgO catalyst for biogas reforming was synthesized via the wet impregnation method. Parameters were optimized using an experimental rig and then simulations were performed using an Aspen HYSYS reaction simulator. We simulated loading the same amount of catalyst into 1, 2, 3, or 10 zones inside the reactor and compared performance parameters, including H2 yield, CO yield, CH4 conversion, and CO2 conversion. The results of simulations showed that a 2-zone configuration with a catalyst ratio of 1:4 was optimal, with 88.2% H2 yield, 83.5% CO yield, 96.4% CH4 conversion, and 91.7% CO2 conversion. Catalyst zone number, catalyst distribution, and catalyst zone position all had significant effects on catalytic behavior. The findings of this study provide new insights into the processes of biogas reforming and other heterogeneous catalysis reactions.  相似文献   

7.
The biogas yield of solid manure from dairy cattle depends on its quality and the proportion of excreta and organic litter material contained within. The biogas yield of both faeces and straw is available in literature. Straw is a common litter material of mixed farms. However, straw is scarcely available on dairy farms. Oat husks are appropriate to replace or supplement straw for use as litter material. In this study, the actual methane yield and the total methane potential of oat husks were determined. Based on an optimized test with ground oat husks, the total methane potential resulted from regression and extrapolation of the experimental data. The total methane potential was determined with 242 LN CH4 kg−1 VS added. Additionally, the actual methane yield over retention time at a digestion temperature of 37 °C was determined, using untreated oat husks. For 42 days of retention, the methane yield was 202 LN CH4 kg−1 VS added at 52% CH4 content. Results indicate that the methane yield of oat husks reaches the same level as that of straw. The total methane potential is not higher, but digestion of oat husks may proceed faster. Verification of the laboratory results on-farm revealed that the contribution of oat husks to overall methane production of a prototype biogas plant for solid manure might reach up to 80%.  相似文献   

8.
A two-stage process to produce hydrogen and methane from lipid-extracted microalgal biomass residues (LMBRs) was developed. The biogas production and energy efficiency were compared between one- and two-stage processes. The two-stage process generated 46 ± 2.4 mL H2/g-volatile solid (VS), and 393.6 ± 19.5 mL CH4/g-VS. The methane yield was 22% higher than the one in the one-stage process. Energy efficiency increased from 51% in the one-stage process to 65% in the two-stage process. Additionally, it was found that repeated batch cultivation was a useful method to cultivate the cultures to improve the methane production rate and reduce the fermentation time. In the repeated batch cultivation, the methane yield slightly decreased if the ammonia levels rose, suggesting that the accumulation of ammonia could affect methane production.  相似文献   

9.
A Ni based catalyst supported on a cordierite monolithic substrate was applied to the autothermal reforming (ATR) of biogas to produce hydrogen. When the feed rates of oxygen and steam were constant, the Steam/CH4 (S/CH4) and O2/CH4 ratios changed because of an increase or decrease in the methane concentration of the biogas. The concentration of methane in the biogas fluctuates roughly between 35% and 65% according to factors such as the properties or amount of the waste. Therefore, the effect of S/CH4 and O2/CH4 ratios on catalyst durability was confirmed by using actual biogas, which was produced by anaerobic fermentation of biomass at the biogasification bench-scale plant in Kyoto. Reforming reactions were carried out at ratios of S/CH4 = 0–4, O2/CH4 = 0.5 and at S/CH4 = 2, O2/CH4 = 0.6. The S/CH4 range of 0–2.0 and the O2/CH4 range of 0.5–0.6 had no effect on the catalyst durability and a S/CH4 ratio of more than 3.0 led to decreased catalytic performance.  相似文献   

10.
We introduced a novel combined process of CO2 methanation (METH) and catalytic decomposition of methane (CDM) for simultaneous production of hydrogen (H2) and carbon nanotubes (CNTs) from biogas. In this process, biogas is catalytically upgraded into CH4-rich gas in METH reactor using Ni/CeO2 catalyst, and the obtained CH4-rich gas is subsequently decomposed into H2 and CNTs in CDM reactor over CoMo/MgO catalyst. Among the three different process scenarios proposed, the combined process with a steam condenser equipped between METH and CDM reactors could greatly improve a CNTs productivity. The CNTs production yield increased by more than 2.5-fold, maximizing at 9.08 gCNTs/gCat with a CNTs purity of 90%. The deposited carbon product was characterized as multi-walled carbon nanotubes (MWCNTs) with a surface area of 136.0 m2/g, comparable with commercial CNTs of 199.8 m2/g. The remarkable IG/ID ratio of 2.18 confirms a superior portion of graphitic carbon in the synthesized CNTs upon the commercial CNTs with IG/ID = 0.74. Notably, the CH4 conversion reached 94.5%, while the CO2 conversion achieved 100%, resulting in the H2 yield and H2 purity higher than 90%. This combined process demonstrates a promising route for production of high quality CNTs and high purity H2 with complete CO2 conversion using biogas as abundant renewable energy resources. In addition, the test of raw biogas showed no deactivation of catalyst, justifying the implementation of the developed process for real biogas without purification.  相似文献   

11.
The sequential generation of hydrogen and methane from xylose by two-stage anaerobic fermentation was investigated for the first time in this study. The effects of substrate concentration, bacteria domestication and nitrogen source on hydrogen yield were studied in the first stage. The genetic characterization of the 16S rDNA was used to analyze the flora of strains domesticated with xylose and glucose. The maximum hydrogen yield is 190.6 ml H2/g xylose when the xylose feedstock concentration is 1% (w/v), hydrogenogens are domesticated with xylose and yeast extract is used as nitrogen source. The soluble metabolite byproducts (SMB) from the hydrogen-producing stage were reutilized by methanogens to produce methane in the second stage. Over 98 wt % of acetate and butyrate in the SMB are reutilized to give a methane yield of 216.5 ml CH4/g xylose. The sequential generation of hydrogen and methane from xylose markedly increases the energy conversion efficiency to 67.5%.  相似文献   

12.
This study investigates the co-digestion of poultry manure (PM) with sugar beet pulp residues (SBPR) obtained from saccharification and dewatering of sugar beet pulp. The laboratory-scale experiments were conducted under batch and semi-continuous conditions at mesophilic temperatures (35 °C). Batch tests gave specific biogas and methane yields of 590 dm3/kgVSfed and 423 dm3CH4/kgVSfed, respectively for SBPR, whereas the corresponding values for PM were 434 dm3/kgVSfed and 300 dm3CH4/kgVSfed. The co-digestion of PM with SBPR was found to increase biogas and methane yields compared to the manure alone. In semi-continuous reactor experiments, the highest methane yield of 346 dm3 CH4/kgVSfed was achieved for the mixture containing poultry manure with 50% SBPR (weight basis) and a solids retention time (SRT) of 20 days. However, when poultry manure was digested as a sole feedstock, the biogas production was inhibited by ammonia, whereas the co-digestion of PM with 25% SBPR was slightly affected by volatile fatty acids, which concentrations exceeded 4000 g/m3.  相似文献   

13.
In this paper, the nitrogen chemistry in an ammonia (NH3) doped flameless jet is investigated using a kinetic reactor network model. The reactor network model is used to explain the main differences in ammonia chemistry for methane (CH4) containing fuels and methane-free fuels. The chemical pathways of nitrogen oxides (NOx) formation and destruction are identified using rate-of-production analysis. The results show that in the case of natural gas, ammonia reacts relatively late at fuel lean condition leading to high NOx emissions. In the pre-ignition zone, the ammonia chemistry is blocked due to the absence of free radicals which are consumed by methane-methyl radical (CH3) conversion. In the case of methane-free gas, the ammonia reacted very rapidly and complete decomposition was reached in the fuel rich region of the jet. In this case the necessary radicals for the ammonia conversion are generated from hydrogen (H2) oxidation.  相似文献   

14.
Using biogas for hydrogen production via autothermal reforming (ATR) can potentially increase the energy conversion efficiency and correspondingly reduce environmental impact. The present study aimed to investigate the performance and characteristics of biogas ATR. A two-dimensional numerical model was developed based on the integration of computational fluid dynamics (CFD) and chemical kinetics. The mass transport, chemical reactions and heat transfer can be analyzed simultaneously in the porous domain. The results show that the presence of CO2 in the feedstock will reduce the performance of the biogas ATR. The effects of operating and feeding conditions were examined and the optimal conditions were identified. Operating the reformer with the steam-to-CH4 ratio (S/CH4) and air-to-CH4 ratio (A/CH4) equal to 0.5 and 2, respectively, can achieve high H2 concentration, while operation with S/CH4 and A/CH4 equal to 4.5 and 2, respectively, can achieve high energy efficiency. The results also show that using either H2 or O2 membrane in the reformer can enhance the biogas autothermal reforming performance by producing high concentration of H2 (40–65%) and solving the harmful hot spot problems.  相似文献   

15.
Autogenerative high pressure digestion (AHPD) provides an integrated biogas upgrading technology, capable of producing biogas with a CH4 content exceeding 95% at pressures up to 90 bar. Hydrolysis is generally regarded as the rate-limiting step in the anaerobic digestion of complex organic matter, governing the volatile fatty acid (VFA) production rate for subsequent conversion to methane. Starch hydrolysis rates in AHPD systems were studied and the potential risk for VFA accumulation was assessed. Under the anticipated practical moderate pressure conditions at 30 °C, experimental CH4-content of the biogas improved from 49 to 73 ± 2% at atmospheric and elevated pressure, respectively. Furthermore, no significant effect of pressure on the hydrolysis was found. Like under atmospheric pressure, gelatinisation was the rate-limiting step for particulate starch (0.05 d−1) and saccharification for gelatinised starch (0.1 d−1). Because no effect was observed on starch, an effect on the hydrolysis rate of more complex organic matter like (ligno-)cellulose is also not anticipated.  相似文献   

16.
Bioenergy produced from co-digestion of sewage sludge (SS) and rice straw (RS) as raw materials, without pretreatment and additional nutrients, was compared for the one-stage system for producing methane (CH4) and the two-stage system for combined production of hydrogen (H2) and CH4 in batch experiments under thermophilic conditions. In the first stage H2 fermentation process using untreated RS with raw SS, we obtained a high H2 yield (21 ml/g-VS) and stable H2 content (60.9%). Direct utilization of post-H2 fermentation residues readily produced biogas, and significantly enhanced the CH4 yield (266 ml/g-VS) with stable CH4 content (75–80%) during the second stage CH4 fermentation process. Overall, volatile solids removal (60.4%) and total bioenergy yield (8804 J/g-VS) for the two-stage system were 37.9% and 59.6% higher, respectively, than the one-stage system. The efficient production of bioenergy is believed to be due to a synergistically improved second stage process exploiting the well-digested post-H2 generation residues over the one-stage system.  相似文献   

17.
This study investigates enhancing the biogas production of sunnhemp by pretreatment, before the anaerobic digestion and co-digestion processes, to address the complex and recalcitrant structure of the plant. Fresh sunnhemp harvested at a cutting interval of 50 days is used in the study. Five systems (each with a 5 litre useable volume) are operated semi-continuously with five different ratios of the feedstock by feeding separate feedstocks every five days with a hydraulic retention time (HRT) of 40 days. The system operates at room temperature (30 °C). The study uses sunnhemp as 20% of the feedstock and also considers sunnhemp mixed with cow manure at different ratios, with the weighed sunnhemp being pretreated with dilute sodium hydroxide. Pretreatment of sunnhemp before digestion produces a methane (CH4) yield 89% greater than that of the untreated sunnhemp. It requires 3.597 kg of dry sunnhemp to produce 1 m3 of CH4 and the annual CH4 yield per hectare is 19,015 m3. In the pretreatment of sunnhemp before co-digestion, the increased CH4 yield depends on the amount of pretreated sunnhemp in the feedstocks. However, the %CH4, the CH4 production level and the system stability depend on the optimal ratio of the sunnhemp to cow manure. The initially prepared sunnhemp to cow manure ratio is recommended at 10 g:10 g in 80 mL of water. At this ratio, the %CH4 and the CH4 yield are 53.84% and 313 kg chemical oxygen demand (COD) removed, respectively, and the COD removal efficiency is 56.4%. Sunnhemp has high potential and it is worth pretreating before producing biogas. Using sunnhemp to produce biogas is recommended to decrease greenhouse gas emissions and mitigate global warming.  相似文献   

18.
The degradation and biogas production potential of sisal fibre waste could be significantly increased by pre-treatment for reduction of particle size. Batch-wise anaerobic digestion of sisal fibre waste was carried out in 1-l digesters with fibre sizes ranging from 2 to 100 mm, at an ambient temperature of 33 °C. Sediment from a stabilisation pond at a sisal production plant was used as starter seed. Total fibre degradation increased from 31% to 70% for the 2 mm fibres, compared to untreated sisal fibres. Furthermore, the results confirmed that methane yield was inversely proportional to particle size. Methane yield increased by 23% when the fibres were cut to 2 mm size and was 0.22 m3 CH4/kg volatile solids, compared to 0.18 m3 CH4/kg volatile solids for untreated fibres. By anaerobic digestion and biogas production, the 148,000 tonne of waste sisal fibres generated annually in Tanzania could yield 22 million m3 of methane, and an additional 5 million m3 of methane if pre-treatment by size reduction to 2 mm was applied.  相似文献   

19.
This paper presents an experimental study on the application of gas hydrate technology to biogas upgrading. Since CH4, CO2 and H2S form hydrates at quite different thermodynamic conditions, the capture of CO2 and H2S by means of gas hydrate crystallization appears to be a viable technological alternative for their removal from biogas streams. Nevertheless, hydrate-based biogas upgrading has been poorly investigated. Works found in literature are mainly at a laboratory scale and concern with thermodynamic and kinetic fundamental studies. The experimental campaign was carried out with an up-scaled apparatus, in which hydrates are produced in a rapid manner, with hydrate formation times of few minutes. Two types of mixtures were used: a CH4/CO2 mixture and a CH4/CO2/H2S mixture. The objective of the investigation is to evaluate the selectivity and the separation efficiency of the process and the role of hydrogen sulphide in the hydrate equilibrium. Results show that H2S can be captured along with CO2 in the same process. The maximum value of the separation factor, defined as the ratio between the number of moles of CO2 and the number of moles of CH4 removed from the gas phase, is 11. In the gas phase, a reduction of CO2 of 24.5% in volume is achievable in 30 min.Energy costs of a real 30-min separation process, carried out in the experimental campaign, are evaluated and compared with those obtained from theoretical calculations. Some aspects for technology improvement are discussed.  相似文献   

20.
The separation of methane from raw biogas was the main purpose of this study. A polymer membrane was used in order to obtain the high energy product, which can be utilized in cogeneration systems (CHP) or as a natural gas substitute. The study showed that using a polyimide hollow fiber module for biogas purification was an efficient method (low energy consumption, small-sized devise and a simple separation module). The satisfying results of laboratory tests caused scale up the installation. Different synthetic gas mixtures were used at the lab-scale, while in the field tests, raw biogas from a Polish two-stage agricultural biogas plant was processed. The plant used the following substrates: maize silage, grass silage and blends of these substrates with different supplements. The concentration of methane in the raw gas was up to 70% volume and contained up to 250 ppm of H2S. In both cases (laboratory and field tests), the retentate after membrane treatment was characterized by high methane concentration (up to 90% volume) and was free of H2S. The applied membrane demonstrated high selectivity for separating CH4 from CO2, H2S and H2O. The permeate stream contained less than 5% volume of CH4, which ensured low losses of the desired biogas component. The influence of pressure (below 10 bars) and stage cut on the quality of the product were analyzed to develop optimal process conditions for mobile plant construction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号