首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study to identify the effect of hydrogen enrichment and differential diffusion on the flame broadening is conducted. Turbulent lean premixed flames in the Broadened Preheat–Thin Reaction (BP-TR) regime are obtained. The flames are stabilized on a Bunsen burner and CH4/H2/air mixtures are adopted with three hydrogen fractions of 0, 30% and 60%. The preheat zone and heat release zone are captured with the multi-species Planar Laser-Induced Fluorescence (PLIF) of OH and CH2O radicals. Flame thicknesses of the preheat and heat release layers are measured. Results show broadened preheat zone and thin heat release layers for the flames, as predicted by the BP-TR regime. The preheat zone thickness can be increased to about 3–6 times compared to the laminar preheat thickness. An apparently decreased preheat zone thickness with hydrogen addition is observed. The differential diffusion is anticipated to locally thicken the heat release zone along the flame front. The mean heat release thickness is nearly not affected by the turbulence or hydrogen addition.  相似文献   

2.
In order to investigate oxyfuel combustion characteristics of typical composition of coal gasification syngas connected to CCS systems. Instantaneous flame front structure of turbulent premixed flames of CO/H2/O2/CO2 mixtures which represent syngas oxyfuel combustion was quantitatively studied comparing with CH4/air and syngas/air flames by using a nozzle-type Bunsen burner. Hot-wire anemometer and OH-PLIF were used to measure the turbulent flow and detect the instantaneous flame front structure, respectively. Image processing and statistical analyzing were performed using the Matlab Software. Flame surface density, mean progress variable, local curvature radius, mean flame volume, and flame thickness, were obtained. Results show that turbulent premixed flames of syngas possess wrinkled flame front structure which is a general feature of turbulent premixed flames. Flame surface density for the CO/H2/O2/CO2 flame is much larger than that of CO/H2/O2/air and CH4/air flames. This is mainly caused by the smaller flame intrinsic instability scale, which would lead to smaller scales and less flame passivity response to turbulence presented by Markstain length, which reduce the local flame stretch against turbulence vortex. Peak value of Possibility Density Function (PDF) distribution of local curvature radius, R, for CO/H2/O2/CO2 flames is larger than those of CO/H2/O2/air and CH4/air flames at both positive and negative side and the corresponding R of absolute peak PDF is the smallest. This demonstrates that the most frequent scale is the smallest for CO/H2/O2/CO2 flames. Mean flame volume of CO/H2/O2/CO2 flame is smaller than that of CH4/air flame even smaller than that of CO/H2/O2/air flame. This would be due to the lower flame height and smaller flame wrinkles.  相似文献   

3.
The flame brush characteristics and turbulent burning velocities of premixed turbulent methane/air flames stabilized on a Bunsen-type burner were studied. Particle image velocimetry and Rayleigh scattering techniques were used to measure the instantaneous velocity and temperature fields, respectively. Experiments were performed at various equivalence ratios and bulk flow velocities from 0.7 to 1.0, and 7.7 to 17.0 m/s, respectively. The total turbulence intensity and turbulent integral length scale were controlled by the perforated plate mounted at different positions upstream of the burner exit. The normalized characteristic flame height and centerline flame brush thickness decreased with increasing equivalence ratio, total turbulence intensity, and longitudinal integral length scale, whereas they increased with increasing bulk flow velocity. The normalized horizontal flame brush thickness increased with increasing axial distance from the burner exit and increasing equivalence ratio. The non-dimensional leading edge and half-burning surface turbulent burning velocities increased with increasing non-dimensional turbulence intensity, and they decreased with increasing non-dimensional bulk flow velocity when other turbulence statistics were kept constant. Results show that the non-dimensional leading edge and half-burning surface turbulent burning velocities increased with increasing non-dimensional longitudinal integral length scale. Two correlations to represent the leading edge and half-burning surface turbulent burning velocities were presented as a function of the equivalence ratio, non-dimensional turbulence intensity, non-dimensional bulk flow velocity, and non-dimensional longitudinal integral length scale. Results show that the half-burning surface turbulent burning velocity normalized by the bulk flow velocity decreased as the normalized characteristic flame height increased.  相似文献   

4.
The highly hydrogen blended turbulent natural gas flames were stabilized on a nozzle-type Bunsen burner and measured with laser diagnostic technique. Flame topology characteristics and turbulent burning velocities for the lean turbulent combustion and uniform laminar flame speed of SL ≈ 40 cm/s were investigated and compared. Hydrogen effect of high diffusivity on combustion properties was analyzed. The local flame structure parameters were obtained and analyzed. Results show that finer wrinkled structure is not only induced by increasing turbulence intensity u’/SL, but also there is a significant enhancement due to the increasing hydrogen ratio. At large turbulence intensities for lean combustion, more elongated flame folds are formed and small scale structures are generated inducing flame pockets detaching from the main flame, which may largely due to the strong thermo-diffusive effect. However, when fixing SL ≈ 40 cm/s, the flame front shows cusp structure with large negative curvature at high hydrogen ratio when u’/SL is low, which mainly result from Darrieus-Landau instability in influencing the flame-turbulence interaction. Moreover, hydrogen addition apparently enhances turbulent burning velocity and the enhancement is more evident for higher intensities. ST/SL seems to follow the power law relation for lean flames while showing a quadratic relation for flame of SL ≈ 40 cm/s. The PDF profile widens encompassing a larger range with increasing hydrogen ratio, indicating that the scale of wrinkled structure is getting smaller. This can be further verified by the profile of local radius of curvature. Hydrogen has an evident effect in enhancing flame surface density which may connect to turbulent burning velocity. And a slightly decreasing trend is found when ZH2 is beyond 0.6 at high u′/SL.  相似文献   

5.
In this study, we investigated the H2-induced transition of confined swirl flames from the “V” to “M” shape. H2-enriched lean premixed CH4/H2/air flames with H2 fractions up to 80% were conducted. The flame structure was obtained with Planar Laser-Induced Fluorescence (PLIF) of the OH radical. Flow fields were measured with Particle Image Velocimetry (PIV). It was observed that the flame tip in the outer shear layer gradually propagated upstream and finally anchored to the injector with the hydrogen fractions increase, yielding the transition from the “V” to “M” flame. We examined the flame structures and the flame flow dynamics during the transition. The shape transition was directly related to the evolution of the corner flame along the outer shear layer. With H2 addition, the outer recirculation zone first appeared downstream where the corner flame started to propagate upstream; then, the recirculation zone expanded upward to form a stable “M” flame gradually. The flow straining was observed to influence the stabilization of the outer shear layer flame significantly. This study can be useful for the understanding of recirculation-stabilized swirling flames with strong confinement. The flame structure and the flow characteristics of flames with a high H2 content are also valuable for model validation.  相似文献   

6.
Flame front structure of turbulent premixed CH4/H2/air flames at various hydrogen fractions was investigated with OH-PLIF technique. A nozzle-type burner was used to achieve the stabilized turbulent premixed flames. Hot-wire anemometer measurement and OH-PLIF observation were performed to measure the turbulent flow and detect the instantaneous flame front structure, respectively. The hydrogen fractions of 0%, 5%, 10% and 20% were studied. Results show that the flame front structures of the turbulent premixed flames are wrinkled flame front with small scale convex and concave structures compared to that of the laminar-flame front. The wrinkle intensity of flame front is promoted with the increase of turbulence intensity as well as hydrogen fraction. Hydrogen addition promotes the flame intrinsic instability which leads to the active response of laminar flame to turbulence and results in the much more wrinkled flame front structure. The value of ST/SL increases monotonically with the increase of u′/SL and hydrogen fraction. The increase of ST/SL with the increase of hydrogen fraction is mainly attributed to the diffusive-thermal instability effects represented by the effective Lewis number, Leeff. A general correlation between ST/SL and u′/SL is provided from the experimental data fitting in the form of ST/SL ∝ a(u′/SL)n, and the exponent, n, gives the constant value of 0.35 for all conditions and at various hydrogen fractions.  相似文献   

7.
The effect of hydrogen blending on lean premixed methane-air flames is studied with the direct numerical simulation (DNS) approach coupled with a reduced chemical mechanism. Two flames are compared with respect to stability and pollutant formation characteristics—one a pure methane flame close to the lean limit, and one enriched with hydrogen. The stability of the flame is quantified in terms of the turbulent flame speed. A higher speed is observed for the hydrogen-enriched flame consistent with extended blow-off stability limits found in measurements. The greater flame speed is the result of a combination of higher laminar flame speed, enhanced area generation, and greater burning rate per unit area. Preferential diffusion of hydrogen coupled with shorter flame time scales accounts for the enhanced flame surface area. In particular, the enriched flame is less diffusive-thermally stable and more resistant to quenching than the pure methane flame, resulting in a greater flame area generation. The burning rate per unit area correlates strongly with curvature as a result of preferential diffusion effects focusing fuel at positive cusps. Lower CO emissions per unit fuel consumption are observed for the enriched flame, consistent with experimental data. CO production is greatest in regions which undergo significant downstream interaction. In these regions, the enriched flame exhibits faster oxidation rates as a result of higher levels of OH concentration. NO emissions are increased for the enriched flame as a result of locally higher temperature and radical concentrations found in cusp regions.  相似文献   

8.
The stability characteristics of partially premixed turbulent lifted methane flames have been investigated and discussed in the present work. Mixture fraction and reaction zone behavior have been measured using a combined 2-D technique of simultaneous Rayleigh scattering, Laser Induced Predissociation Fluorescence (LIPF) of OH and Laser Induced Fluorescence (LIF) of C2Hx. The stability characteristics and simultaneous mixture fraction-LIPF-LIF measurements in three lifted flames with originally partially premixed jets at different mean equivalence ratio and Reynolds number are presented and discussed in this paper. Higher stability of partially premixed flames as compared to non-premixed flames has been observed. Lifted, attached, blow-out and blow-off regimes have been addressed and discussed in this work. The data show that the mixture fraction field on approaching the stabilization region is uniquely characterized by a certain level of mean and rms fluctuations. This suggests that the stabilization mechanism is likely to be controlled by premixed flame propagation at the stabilization region. Triple flame structure has been detected in the present flames, which is likely to be the appropriate model at the stabilization point.  相似文献   

9.
Direct numerical simulations (DNS) are conducted to study the structure of partially premixed and non-premixed methane flames in high-intensity two-dimensional isotropic turbulent flows. The results obtained via “flame normal analysis” show local extinction and reignition for both non-premixed and partially premixed flames. Dynamical analysis of the flame with a Lagrangian method indicates that the time integrated strain rate characterizes the finite-rate chemistry effects and the flame extinction better than the strain rate. It is observed that the flame behavior is affected by the “pressure-dilatation” and “viscous-dissipation” in addition to strain rate. Consistent with previous studies, high vorticity values are detected close to the reaction zone, where the vorticity generation by the “baroclinic torque” was found to be significant. The influences of (initial) Reynolds and Damköhler numbers, and various air-fuel premixing levels on flame and turbulence variables are also studied. It is observed that the flame extinction occurs similarly in flames with different fuel-air premixing. Our simulations also indicate that the CO emission increases as the partial premixing of the fuel with air increases. Higher values of the temperature, the OH mass fraction and the CO mass fraction are observed within the flame zone at higher Reynolds numbers.  相似文献   

10.
11.
A sub-grid scale closure for Large Eddy Simulation (LES) of turbulent combustion based on physical-space filtering of laminar flames is discussed. Applied to an unstructured grid, the combustion LES filter size is not fixed in this novel approach devoted to LES with refined meshes, but calibrated depending on the local level of unresolved scalar fluctuations. The context is premixed or stratified flames, the derived model relies on four balance equations for mixture fraction and its variance, and a progress variable and its variance. The proposed formalism is based on a presumed probability density function (PDF) derived from the filtered flames. Closures for the terms of the equations that are unresolved over LES grids are achieved through the PDF. The method uses flamelet tabulated detailed chemistry and is first applied to the simulation of laminar flames (1D and 2D) over various grids for validation, before simulating a turbulent burner studied experimentally by Sweeney et al. (2012). Since this burner also features differential diffusion effects, the numerical model is modified to account for accumulation of carbon in the recirculation zone behind the bluff-body. A differential diffusion number based on the gradient of residence times is proposed, in an attempt to globally quantify differential diffusion effects in burners.  相似文献   

12.
This paper investigated the hydrogen enriched methane/air flames diluted with CO2. The turbulent premixed flame was stabilized on a Bunsen type burner and the two dimensional instantaneous OH profile was measured by Planar Laser Induced Fluorescence (PLIF). The flame front structure characteristics were obtained by extracting the flame front from OH-PLIF images. And the turbulence-flame interaction was analyzed through the statistic parameters. The role of hydrogen addition as well as CO2 dilution on the features of turbulent flame were revealed by those parameters. In this work, hydrogen fractions of 0, 0.2 and CO2 dilution ratios of 0, 0.05 and 0.1 were studied. Results showed that hydrogen addition can enhance turbulent burning velocity ST/SL through decreasing the scale of the finer structure of the wrinkled flame front, caused by the smaller flame instability scale. In contrast, CO2 dilution decreased turbulent burning velocity ST/SL due to its inactive response to turbulence perturbation and larger flame wrinkles. For all flames, the probability density function (PDF) profile of the local curvature radius R shows a bias to positive value, resulted from the flame intrinsic instability. The PDF profile of R decreases with CO2 dilution, while the value of local curvature radius corresponding to the peak PDF is larger. This indicates that larger wrinkles structure was generated due to CO2 dilution, which leads to the decrease in ST/SL as a consequence. Hydrogen addition increases the flame volume and results in more intense combustion. CO2 dilution has a decrease effect on flame volume for both XH2 = 0 and XH2 = 0.2 while the decrease is obvious at XH2 = 0.2, ZCO2 = 0.1. In all, hydrogen enrichment improves the combustion while CO2 can moderate combustion. Therefore, adding hydrogen and CO2 in natural gas can be a potential method for adjusting the combustion intensity in combustion chamber during the combustor design.  相似文献   

13.
The CO/H2/CO2/O2, CO/H2/CO2/air turbulent premixed flames as the model of syngas oxyfuel and syngas/air combustion were studied experimentally and compared to that of CH4/air mixtures at high pressures up to 1.0 MPa. Hydrogen ratio in syngas was set to be 35%, 50% and 65% in volumetric fraction. Four perforated plates are used to generate wide range of turbulence intensity and scales. The instantaneous flame structure was measured with OH-PLIF technique and then statistic flame structure parameters and turbulent burning velocity were derived to interpret the multi scale turbulence-flame interaction. Results show that the flame structure of syngas is wrinkled and convex cusps to the unburned mixtures are sharper and deeper comparing to that of CH4 flames. Pressure has a dominating effect on flame wrinkling other than mixtures composition at high pressure of 1.0 MPa. The flame surface density, Σ of syngas is larger than that of CH4. The Σ of syngas flames is almost independent on pressure and hydrogen ratio especially when hydrogen ratio is over 50% which is a significant feature of syngas combustion. Larger flame surface density for syngas flames mainly comes from the finer structure with smaller wrinkles which is the result of more intensive flame intrinsic instability. The ST/SL of syngas is larger than CH4 and it slightly increases with the pressure rise. The ST/SL of syngas oxyfuel is similar to that of syngas/air flames in the present study. The ST/SL increases with the increase of hydrogen ratio and keeps almost constant when hydrogen ratio is over 50%.  相似文献   

14.
The existence of good experimental data for turbulent premixed flames is of interest for the development and validation of numerical models. In this paper special focus is laid on the systematic variation of either the fuel-air ratio with fixed flow rate or varied flow and turbulence with fixed composition. In total, 15 different turbulent Bunsen flames are investigated. With the planar conditioned particle image velocimetry (CPIV) technique, simultaneous access is given to the flow, turbulence, and flame position data, using PIV for flow and turbulence and the density jump at the instantaneous flame front for reaction progress variable and density. This allows the fast determination of a large amount of statistical data such as Reynolds- and Favre-averaged mean reaction progress and velocities, which are needed for the density-weighted sets of equations used in the numerical codes. Additionally, conditioned and unconditioned mean velocities and velocity fluctuations can be determined and the turbulent flux terms of the reaction progress variable can be measured directly. Thus, a comprehensive data set is presented, which can be used for validation studies. The measured turbulent flux is compared with two models, the gradient diffusion assumption and a relation proposed by Veynante et al. that accounts for the competition between gas-dynamic expansion and turbulent mixing. While the former approach fails, the latter shows reasonable agreement for the radial flux and also accounts for the trend observed for the varied flow or flame conditions. The axial turbulent flux near the tip of the flame is not fully resolved.  相似文献   

15.
Ammonia is one of the most promising alternative fuels. In particular, ammonia combustion for gas turbine combustors for power generation is expected. To shift the fuel for a gas turbine combustor to ammonia step-by-step, the partial replacement of natural gas by ammonia is considered. To reveal the turbulent combustion characteristics, CH4/NH3/air turbulent premixed flame at 0.5 MPa was experimentally investigated. The ammonia ratio based on the mole fraction and lower heating value was varied from 0 to 0.2. The results showed that the ratio of the turbulent burning velocity and unstretched laminar burning velocity decreased with an increase in the ammonia ratio. The reason for this variation is that the flame area decreased with an increase in the ammonia ratio as the flame surface density decreased and the fractal inner cutoff increased. The volume fractions in the turbulent flame region were almost the same with ammonia addition, indicating that combustion oscillation can be handled in a manner similar to that for the case of natural gas for CH4/NH3/air flames.  相似文献   

16.
This paper studies the effects of the number and location of solid obstacles on the rate of propagation of turbulent premixed flames. A vented explosion chamber is constructed where controlled premixed flames are ignited from rest to propagate past grids or baffles plates as well as other solid obstacles strategically positioned in the chamber. Laser Induced Fluorescence (LIF) is used to image OH which is used as an indicator of the reaction zone while pressure transducers are used to obtain pressure-time traces. Single grids or baffle plates located at different distances from the ignition source are tested. Two as well as three baffle plates are also investigated in varying configurations. It is found that while the peak overpressure increases with increasing number of grids or baffle plates, a limit is reached where the pressure starts to decrease. The location of the obstacles is found to have a significant effect on the overpressure and the flame structure. Higher overpressures are obtained when the baffle plates and obstacles are stacked closer together hence not allowing turbulence to decay. LIF images for OH show that the reaction zones become more contorted with increasing number of baffle plates in the flame path.  相似文献   

17.
We study the dynamics and properties of a turbulent flame, formed in the presence of subsonic, high-speed, homogeneous, isotropic Kolmogorov-type turbulence in an unconfined system. Direct numerical simulations are performed with Athena-RFX, a massively parallel, fully compressible, high-order, dimensionally unsplit, reactive flow code. A simplified reaction-diffusion model represents a stoichiometric H2-air mixture. The system being modeled represents turbulent combustion with the Damköhler number Da=0.05 and with the turbulent velocity at the energy injection scale 30 times larger than the laminar flame speed. The simulations show that flame interaction with high-speed turbulence forms a steadily propagating turbulent flame with a flame brush width approximately twice the energy injection scale and a speed four times the laminar flame speed. A method for reconstructing the internal flame structure is described and used to show that the turbulent flame consists of tightly folded flamelets. The reaction zone structure of these is virtually identical to that of the planar laminar flame, while the preheat zone is broadened by approximately a factor of two. Consequently, the system evolution represents turbulent combustion in the thin reaction zone regime. The turbulent cascade fails to penetrate the internal flame structure, and thus the action of small-scale turbulence is suppressed throughout most of the flame. Finally, our results suggest that for stoichiometric H2-air mixtures, any substantial flame broadening by the action of turbulence cannot be expected in all subsonic regimes.  相似文献   

18.
In this work, a mathematical model of fuel conversion and energy balance has been developed to study the dynamic behavior of a lean premixed pre-vaporized combustor fed with ethanol/air and ethanol–hydrogen/air mixtures. The combustor was modeled as a well stirred reactor (WSR). Results show that, for a simplified model reaction, Hopf bifurcations occur. Spontaneous oscillations have been found, suggesting that the combustion reaction plays an important role in the development of dynamic regimes. Hydrogen addition stabilizes ethanol combustion, damping the oscillations.  相似文献   

19.
Recent work on reaction modelling of turbulent lean premixed combustion has shown a significant influence of the Lewis number even at high turbulence intensities, if different fuels and varied pressure is regarded. This was unexpected, as the Lewis number is based on molecular transport quantities (ratio of molecular thermal diffusivity to mass diffusivity), while highly turbulent flames are thought to be dominated from turbulent mixing and not from molecular transport. A simple physical picture allows an explanation, assuming that essentially the leading part of the wrinkled flame front determines the flame propagation and the average reaction rate, while the rear part of the flame is of reduced importance here (determining possibly the burnout process and the flame brush thickness but not the flame propagation). Following this argumentation, mostly positively curved flame elements determine the flame propagation and the average reaction rate, where the influence of the preferential molecular diffusion and the Lewis number can easily seen to be important. Additionally, an extension of this picture allows a simple derivation of an effective Lewis number relation for lean hydrogen/methane mixtures. The applicability and the limit of this concept is investigated for two sets of flames: turbulent pressurized Bunsen flames, where hydrogen content and pressure is varied (from CNRS Orléans), and highly turbulent pressurized dump combustor flames where the hydrogen content is varied (from PSI Baden). For RANS simulations, comparison of flame length data between experiment and an effective Lewis number model shows a very good agreement for all these flames with hydrogen content of the fuel up to 20 vol.%, and even rather good agreement for 30% and 40% hydrogen.  相似文献   

20.
The effects of density ratio and differential diffusion on premixed flame propagation of H2/O2/N2 mixtures are investigated by constant volume combustion chamber. The density ratio and differential diffusion are controlled independently by adjusting the O2/N2 ratio and equivalence ratio. Results show that the density ratio has no effect on turbulent burning velocity while the differential diffusion has a promotion effect on turbulent burning velocity. The onsets of laminar flame acceleration are promoted by both density ratio and differential ratio. The turbulent flames perform a continuous acceleration propagation and the dependence between flame propagation speed and flame radius can be characterized as (dR/dt)/(σ·SL) ~ R0.33~0.37, which is lower than the 1/2 power law. The acceleration parameters of laminar flames and turbulent flames (u/SL = 1) are around 0.17 and 0.36 respectively, and both of them are not affected by density ratio and differential diffusion. The empirical formula m = 0.19·(u/SL)0.4+0.17 is concluded to quantitatively describe the accelerative characteristics of laminar and turbulent flames. The current study indicates that the acceleration of laminar flames is mainly induced by flame intrinsic instability, and the latter can affect the acceleration onset but not affect the fractal excess. The acceleration of turbulent flames is dominated by turbulent stretch, while the effects of density ratio and differential diffusion can be ignored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号