首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to evaluate the effect of the organic loading rate (OLR) (60, 90, and 120 g Chemical Oxygen Demand (COD). L?1. d?1) on hydrogen production from cheese whey and glycerol fermentation as cosubstrates (50% cheese whey and 50% glycerol on a COD basis) in a thermophilic fluidized bed reactor (55 °C). The increase in the OLR to 90 gCOD.L?1. d?1 favored the hydrogen production rate (HPR) (3.9 L H2. L?1. d?1) and hydrogen yield (HY) (1.7 mmol H2. gCOD?1app) concomitant with the production of butyric and acetic acids. Employing 16S rRNA gene sequencing, the highest hydrogen production was related to the detection of Thermoanaerobacterium (34.9%), Pseudomonas (14.5%), and Clostridium (4.7%). Conversely, at 120 gCOD.L?1. d?1, HPR and HY decreased to 2.5 L H2. L?1. d?1 and 0.8 mmol H2. gCOD?1app, respectively, due to lactic acid production that was related to the genera Thermoanaerobacterium (50.91%) and Tumebacillus (23.56%). Cofermentation favored hydrogen production at higher OLRs than cheese whey single fermentation.  相似文献   

2.
The objective of this study was to evaluate the effects of hydraulic retention time (HRT) (8–1 h) on H2 production from sugarcane juice (5000 mg COD L−1) in mesophilic (30 °C, AFBR-30) and thermophilic (55 °C, AFBR-55) anaerobic fluidized bed reactors (AFBRs). At HRTs of 8 and 1 h in AFBR-30, the H2 production rates were 60 and 116 mL H2 h−1 L−1, the hydrogen yields were 0.60 and 0.10 mol H2 mol−1 hexose, and the highest bacterial diversities were 2.47 and 2.34, respectively. In AFBR-55, the decrease in the HRT from 8 to 1 h increased the hydrogen production rate to 501 mL H2 h−1 L−1 at the HRT of 1 h. The maximum hydrogen yield of 1.52 mol H2 mol−1 hexose was observed at the HRT of 2 h and was associated with the lowest bacterial diversity (0.92) and highest bacterial dominance (0.52).  相似文献   

3.
This work explores the production of biohydrogen from brewery wastewater using as inoculum a culture produced by natural fermentation of synthetic wastewater and Klebsiella pneumoniae isolated from the environment. Klebsiella pneumoniae showed good performance as inoculum, as evaluated using assays of between 9 and 16 cycles, with durations of 12 and 24 h, carbohydrate concentrations from 2.79 to 7.22 g L−1, and applied volumetric organic loads from 2.6 to 12.6 g carbohydrate L−1 day−1. The best results were achieved with applied volumetric organic loads of 12.6 g carbohydrate L−1 day−1 and cycle length of 12 h, resulting in mean volumetric productivity of 0.88 L H2 L−1 day−1, maximum molar flow of 10.80 mmol H2 h−1, and mean yield of 0.70 mol H2 mol−1 glucose consumed. The biogas H2 content was between 18 and 42%, while the mean organic compounds removal and carbohydrate conversion efficiencies were 23 and 81%, respectively. The inoculum produced by natural fermentation was not viable.  相似文献   

4.
Biohydrogen production from cassava starch wastewater was evaluated in anaerobic sequencing batch biofilm reactor (AnSBBR) using different inoculum (mixed cultures from naturally fermented wastewater and anaerobic sludge thermally treated) and feeding strategies (batch and fed-batch). The highest hydrogen productivity (2.4 LH2 L−1 d−1) and yield (11.7 molH2 kg−1Carbohydrates) were verified in low and intermediate organic load rates (12 and 14 g L−1 d−1) and longer cycle time (4 h), respectively. The productivity was favored by fed-batch strategy, and yield by batch. The hydrogen production was verified in both inoculum sources. However, in the assays inoculated from naturally fermented wastewater, with higher organic load rate (18 g L−1 d−1) and intermediate cycle time (3 h) no hydrogen was observed, regardless the feeding strategy, indicating that the inhibitory effects of the indigenous microorganisms present in cassava starch wastewater were more expressive in these conditions. The operational conditions applied to hydrogen production in AnSBBR from cassava starch wastewater may influence the microflora development in the reactor. In this study three possible scenarios were verified: hydrogen-producing bacteria (HPB) growth; hydrogen-producing bacteria inhibition or coexistence between ones and lactic acid bacteria (LAB), which are autochthones of this wastewater.  相似文献   

5.
Recently, there has been a propensity to postpone dealing with the world's climate concerns until later, resulting in a 1.5 °C rise in temperature over the last century. Therefore, interest in biologically derived, inexhaustible energy sources based on solar energy is growing. Cyanobacteria have the potential to produce clean, renewable fuels in the form of hydrogen (H2) gas, derived from solar energy and water. The current study reports the screening 11 cyanobacterial strains isolated from rice paddies and hotsprings for efficient H2 producers. According to our findings, H2 concentrations in the species ranged from 3.6 to 48.9 μmol mg−1 Chl a h−1. H2 production by isolated species was shown to have a 2% positive influence on oxygen (O2) and carbon dioxide (CO2) concentrations and a 2% negative effect on all nitrogen gas (N2) concentrations. It was discovered that at high CO2 concentrations, photosynthesis is enhanced but H2 production is suppressed. Anabaena variabilis BTA-1047 was found to be the most active H2-producing species, with an H2 production activity of 21.3 μmol mg−1 Chl a h−1. Moreover, a 1% O2: 2% CO2 gas mixture doubled the strain activity of H2 production. The findings of the study called into the question the notion that only an anaerobic environment is required for H2 production by N2-fixing cyanobacterial species and explored whether H2 productivity can be increased by stimulating the micro-anaerobic environment with a carbon source.  相似文献   

6.
In recent times, biohydrogen production from microalgal feedstock has garnered considerable research interests to sustainably replace the fossil fuels. The present work adapted an integrated approach of utilizing deoiled Scenedesmus obliquus biomass as feedstock for biohydrogen production and valorization of dark fermentation (DF) effluent via biomethanation. The microalgae was cultivated under different CO2 concentration. CO2-air sparging of 5% v/v supported maximum microalgal growth and carbohydrate production with CO2 fixation ability of 727.7 mg L?1 d?1. Thereafter, lipid present in microalgae was extracted for biodiesel production and the deoiled microalgal biomass (DMB) was subjected to different pretreatment techniques to maximize the carbohydrate recovery and biohydrogen yield. Steam heating (121 °C) in coherence with H2SO4 (0.5 N) documented highest carbohydrate recovery of 87.5%. DF of acid-thermal pretreated DMB resulted in maximum H2 yield of 97.6 mL g?1 VS which was almost 10 times higher as compared to untreated DMB (9.8 mL g?1 VS). Subsequent utilization of DF effluent in biomethanation process resulted in cumulative methane production of 1060 mL L?1. The total substrate energy recovered from integrated biofuel production system was 30%. The present study envisages a microalgal biorefinery to produce biohydrogen via DF coupled with concomitant CO2 sequestration.  相似文献   

7.
The objective of the present study was to determine the energetic potential from cassava starch wastewater in a two-stage system (BioH2 + BioCH4) composed by anaerobic sequencing batch biofilm reactors (AnSBBR). Included in this general objective, the behavior of the methanogenic AnSBBR regarding organic matter removal and biomethane production will be investigated. The acidogenic AnSBBR was operated with organic loading rate (OLR) of 14 gCarb.L−1.d−1, influent concentration of 5 gCarb.L−1 and cycle time of 4 h. The methanogenic AnSBBR was submitted to OLR increase (3.7–12 gCOD.L−1.d−1), provided by arrangements between influent concentration (2.8; 4.0 and 6.0 gCOD.L−1) and cycle time (6; 8 and 12 h). For the evaluated condition, the acidogenic reactor presented productivity of 0.7 LH2.L−1.d−1 and yield of 1.1 molH2.kg−1Carb. The methanogenic reactor presented stable methane production (%CH4 > 78) during the 260-days operating period. The maximum methane productivity (2.71 LCH4.L−1.d−1) and yield (0.263 LCH4.g−1COD) were obtained at OLR of 12 gCOD.L−1.d−1 and cycle time of 6 h. The estimated energy production rate in the two-stage system (BioH2 + BioCH4) was 105.2 kJ.L−1.d−1.  相似文献   

8.
Under certain conditions, cyanobacteria can switch from photosynthesis to hydrogen production, which is a good energy carrier. However, the biological diversity of hydrogen-releasing cyanobacteria has a great unexplored potential. This study is aimed to investigate the ability of new strains of cyanobacteria Cyanobacterium sp. IPPAS B-1200, Dolichospermum sp. IPPAS B-1213, and Sodalinema gerasimenkoae IPPAS B-353 to release H2 and to evaluate the effects of photosystem II inhibitor 3-(3,4-dichlorphenyl)-1,1-dimethylurea (DCMU) on H2 production under light and dark conditions. The results showed that cultures treated with DCMU produced several times more H2 than untreated cells. The highest rate of H2 photoproduction of 4.24 μmol H2 (mg Chl a h)?1 was found in a Dolichospermum sp. IPPAS B-1213 culture treated with 20 μM DCMU.  相似文献   

9.
Alkaline water electrolysis is the most promising approach for the industrial production of green hydrogen. This study investigates the dynamic operational characteristics of an industrial-scale alkaline electrolyzer with a rated hydrogen production of 50 m3/h. Strategies for system control and equipment improvement in dynamic-mode alkaline electrolytic hydrogen production are discussed. The electrolyzer can operate over a 30%–100% rated power load, thereby facilitating high-purity (>99.5%) H2 production, competitive DC energy efficiency (4.01–4.51 kW h/Nm3 H2, i.e., 73.1%–65.0% LHV), and good gas–liquid fluid balance. A safe H2 content of 2% in O2 (50% LFL) can be guaranteed by adjusting the system pressure. In transient operation, the electrolyzer can realize minute-level power and pressure modulation with high accuracy. The results confirm that the proposed alkaline electrolyzer can absorb highly fluctuating energy output from renewables because of its capability to operate in a dynamic mode.  相似文献   

10.
Polyaniline is a typical conducting polymer with high migration electron rate, good stability, eco-friendly properties, and high absorption coefficients for visible light. In the present study, polyaniline decorated Pt@TiO2 for visible light-driven H2 generation is reported for the first time. The above-mentioned nanocomposite is prepared through a simple oxidative-polymerization and characterized by infrared spectroscopy, transmission electron microscopy, X–ray diffraction, thermogravimetric analysis, and ultraviolet–visible diffuse reflectance spectra. Polyaniline modification improves the absorption of the nanocomposite in visible light region via a photosensitization effect similar to dye–sensitization but does not influence the crystal structure and size of Pt@TiO2. The polyaniline modified Pt@TiO2 exhibits a remarkable visible light activity (61.8 μmol h−1 g−1) and good stability for H2 generation (with an average apparent quantum yield of 10.1%) with thioglycolic acid as an electron donor. This work provides new insights into using conducting polymers, including polyaniline, as a sensitizer to modify Pt@TiO2 for visible-light hydrogen generation.  相似文献   

11.
12.
The use of multi-pore nanostructured g-C3N4 photocatalysts is an efficient approach to separate photogenerated charge carriers and increase visible light photocatalytic performance. Recent progress has yielded nanostructured material through hard templating, which limits potential applications. Integrating the 2D building block into multidimensional porous structures remains a significant challenge in scalable production. Herein, a novel technique based on P407 bubble clusters templating and fixation by freezing is described for the first time to fabricate a 3D opened-up macroporous g-C3N4 nanostructures for photocatalytic H2 evolution. Three-dimensional hierarchical nanostructures provide more contact active sites and synergistically promote the creation of heterogeneous catalytic interfaces. This feature is very useful for understanding the transfer path of photoinduced charges as well as the origins of the high charge separation efficiency in photocatalytic reactions, thus yielding a remarkable visible light-induced H2 evolution rate of 4213.6 μmol h−1 g−1, which is nearly 5.6 times (716 μmol h−1 g−1) higher than that of lamellar bulk g-C3N4. This newly developed approach offers a promising alternative to synthesize broad-spectral response 3D hierarchal g-C3N4 nanostructures and can be extended to assemble other functional nanomaterials as building blocks into macroscopic configurations coupled with electronic modulation strategy simultaneously.  相似文献   

13.
In this study, we apply a short-term voltage (0.2–0.8 V) to both crude glycerol (CG) and an anaerobic digestion (AD) effluent in a single-chamber microbial fuel cell (MFC) for power production. This improves the bioelectrogenesis in both CG (in MFC-1) and the AD effluent (in MFC-2), but higher power generation is attained in MFC-2. The use of domestic and synthetic wastewaters in the AD process leads to the generation of 195 and 350 mL H2/L-medium, respectively. MFC-2 performs better than MFC-1 in terms of both voltage generation and chemical oxygen demand (COD) reduction. The application of 0.8 V yields a power density of 311 mW/m2 (1.94 times higher than that of the control (160 mW/m2)). In addition, MFC-2 exhibits a 70% COD removal at 0.8 V, which decreases to 56% at 0.2 V. Thus, the application of a short-term voltage in MFC can stimulate both bioelectrogenesis and COD removal.  相似文献   

14.
The present study is focused on bio hydrogen (H2) and bioplastic (i.e., poly-β-hydroxybutyrate; PHB) productions utilizing various wastes under dark fermentation, photo fermentation and subsequent dark-photo fermentation. Potential bio H2 and PHB producing microbes were enriched and isolated. The effects of substrate (rice husk hydrolysate, rice straw hydrolysate, dairy industry wastewater, and rice mill wastewater) concentration (10–100%) and pH (5.5–8.0) were examined in the batch mode under the dark and photo fermentation conditions. Using 100% rice straw hydrolysate at pH 7, the maximum bio H2 (1.53 ± 0.04 mol H2/mol glucose) and PHB (9.8 ± 0.14 g/L) were produced under dark fermentation condition by Bacillus cereus. In the subsequent dark-photo fermentation, the highest amounts of bio H2 and PHB were recorded utilizing 100% rice straw hydrolysate (1.82 ± 0.01 mol H2/mol glucose and 19.15 ± 0.25 g/L PHB) at a pH of 7.0 using Bacillus cereus (KR809374) and Rhodopseudomonas rutila. The subsequent dark-photo fermentative bio H2 and PHB productions obtained using renewable biomass (i.e., rice husk hydrolysate and rice straw hydrolysate) can be considered with respect to the sustainable management of global energy sources and environmental issues.  相似文献   

15.
The decomposition of formic acid is studied in a continuous sub- or supercritical water reactor at temperatures between 300 and 430 °C, a pressure of 25 MPa, residence times between 4 and 65 s, and a feedstock concentration of 3.6 wt%. In situ Raman spectroscopy is used to produce real-time data and accurately quantify decomposition product yields of H2, CO2, and CO. Collected spectra are used to determine global decomposition rates and kinetic rates for individual reaction pathways. First-order global Arrhenius parameters are determined as log A (s−1) = 1.6 ± 0.20 and EA = 9.5 ± 0.55 kcal/mol for subcritical decomposition, and log A (s−1) = 12.56 ± 1.96 and EA = 41.90 ± 6.08 kcal/mol for supercritical decomposition. Subcritical and supercritical Arrhenius parameters for individual pathways are proposed. The variance in rate parameters is likely due to changing thermophysical properties of water across the critical point. There is strong evidence for a surface catalyzed free-radical mechanism responsible for rapid decomposition above the critical point, facilitated by low density at supercritical conditions.  相似文献   

16.
In this work, a sol-gel Ni–Mo2C–Al2O3 catalyst is employed for the first time in the glycerol steam reforming for syngas production. Catalyst stability and activity are investigated in the temperature range of 550 °C–700 °C and time on stream up to 30 h. As reaction temperature increases, from 550 °C to 700 °C, H2 yield boosts from 22% to 60%. The stability test, carried out at milder conditions (600 °C and Gas-Hourly Space-Velocity (GHSV) of 50,000 mL h−1.gcat−1), shows high catalyst stability, up to 30 h, with final conversion, H2 yield, and H2/CO ratio of 95%, 53% and 1.95, respectively. Both virgin and spent catalysts have been characterized by a multitude of techniques, e.g., Atomic-Absorption spectroscopy, Raman spectroscopy, N2-adsorption-desorption, and Transmission Electron Microscopy (TEM), among others. Regarding the spent catalysts, carbon deposits’ morphology becomes more graphitic as the reaction temperature increases, and the total coke formation is mitigated by increasing reaction temperature and lowering GHSV.  相似文献   

17.
Polymeric carbon/activated carbon aerogels were synthesized through sol-gel polycondensation reaction followed by the carbonization at 800 °C under Argon (Ar) atmosphere and subsequent physical activation under CO2 environment at different temperatures with different degrees of burn-off. Significant increase in BET specific surface area (SSA) from 537 to 1775 m2g1 and pore volume from 0.24 to 0.94 cm3g1 was observed after physical activation while the pore size remained constant (around 2 nm). Morphological characterization of the carbon and activated carbons was conducted using X-ray diffraction (XRD) and Raman spectroscopy. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to investigate the effect of thermal treatment (surface cleaning) on the chemical composition of carbon samples.Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to analyse the capacitive and resistive behaviour of non-activated/activated/and surface cleaned activated carbons employed as electroactive material in a two electrode symmetrical electrochemical capacitor (EC) cell with 6 M KOH solution used as the electrolyte.CV measurements showed improved specific capacitance (SC) of 197 Fg1 for activated carbon as compared to the SC of 136 Fg1 when non-activated carbon was used as electroactive material at a scan rate of 5 mVs−1. Reduction in SC from 197 Fg1 to 163 Fg1 was witnessed after surface cleaning at elevated temperatures due to the reduction of surface oxygen function groups.The result of EIS measurements showed low internal resistance for all carbon samples indicating that the polymeric carbons possess a highly conductive three dimensional crosslinked structure. Because of their preferred properties such as controlled porosity, exceptionally high specific surface area, high conductivity and desirable capacitive behaviour, these materials have shown potential to be adopted as electrode materials in electrochemical capacitors.  相似文献   

18.
Silicon-based nanosheets (SNS) were synthesised via a mild (60 °C) and time-saving (8 h) modified topochemical method. Then, Cu3(BTC)2 and SNS@Cu3(BTC)2 were successfully synthesised by microwave irradiation, and their characteristics and hydrogen storage performance were analysed by multiple techniques. The accordion-like SNS exhibited void spaces, a unique low buckled structure, and ultrathin, almost transparent, loosely stacked layers with a high specific surface area (362 m2/g). After in-situ synthesis with Cu3(BTC)2, the SNS compound achieved a high specific surface area (1526 m2/g), outstanding hydrogen storage performance (5.6 wt%), and a desirable hydrogen diffusion coefficient (10?7). Thus, SNS doping improved the hydrogen storage performance of Cu3(BTC)2 by 64% through electron transfer reactions with Cu enabled by the unique composite nanostructure of SNS@Cu3(BTC)2. This study presents a promising method of synthesising SNS and porous composite materials for hydrogen storage.  相似文献   

19.
Sugars released from lignocellulose biomass are a promising substrate for biohydrogen production. This study evaluates the effect of pH controlled between 4.0 and 7.5 on continuous dark-fermentative H2 production from the mixture of cellobiose, xylose and arabinose. High hydrogen production rate was obtained for pH values between 6.0 and 7.0 with a maximum of 7.41 ± 0.16 L/L-d at pH 7.0. On the other hand, the highest H2 yields of around 1.74 ± 0.02 mol/molconsumed were obtained at pH 4.5, 5.0 and 6.0. Cellobiose was completely utilized in nearly the entire pH range, while the highest consumption of xylose and arabinose was obtained at pH 6.0 and 7.0, respectively. It shows the challenges in selecting optimum pH for fermentation of mixed sugars. Significant impact of pH conditions on the microbial structure was observed. Between pH 4.0 and 7.0 Clostridium genus dominated the consortium, while above pH 7.0 relative abundance of Bacillus genus increased significantly.  相似文献   

20.
Steam methane reforming (SMR) needs the reaction heat at a temperature above 800 °C provided by the combustion of natural gas and suffers from adverse environmental impact and the hydrogen separated from other chemicals needs extra energy penalty. In order to avoid the expensive cost and high power consumption caused by capturing CO2 after combustion in SMR, natural gas Chemical Looping Reforming (CLR) is proposed, where the chemical looping combustion of metal oxides replaced the direct combustion of NG to convert natural gas to hydrogen and carbon dioxide. Although CO2 can be separated with less energy penalty when combustion, CLR still require higher temperature heat for the hydrogen production and cause the poor sintering of oxygen carriers (OC). Here, we report a high-rate hydrogen production and low-energy penalty of strategy by natural gas chemical-looping process with both metallic oxide reduction and metal oxidation coupled with steam. Fe3O4 is employed as an oxygen carrier. Different from the common chemical looping reforming, the double side reactions of both the reduction and oxidization enable to provide the hydrogen in the range of 500–600 °C under the atmospheric pressure. Furthermore, the CO2 is absorbed and captured with reduction reaction simultaneously.Through the thermodynamic analysis and irreversibility analysis of hydrogen production by natural gas via chemical looping reforming at atmospheric pressure, we provide a possibility of hydrogen production from methane at moderate temperature. The reported results in this paper should be viewed as optimistic due to several idealized assumptions: Considering that the chemical looping reaction is carried out at the equilibrium temperature of 500 °C, and complete CO2 capture can be achieved. It is assumed that the unreacted methane and hydrogen are completely separated by physical adsorption. This paper may have the potential of saving the natural gas consumption required to produce 1 m3 H2 and reducing the cost of hydrogen production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号