首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, self-made diformyl-dibenzo-18-crown-6 ether (DDB18C6) is in-situ grafted into the pores of mesoporous molecular sieve (SBA-NH2), and then the aforementioned modified molecular sieve (SBA-C) is introduced into the polyvinyl alcohol solution, and then the glutaraldehyde as the crosslinking agent to synthesized the anion exchange membrane under for fuel cell application. During the experiment, a series of anion exchange membranes (P-(SBAx%-C), x is the mass fraction of SBA-NH2) is developed and the pore channels and chemical structures of the aforementioned membrane is verified by FT-IR, SAXD, N2 adsorption-desorption, 1H NMR and XPS. Moreover, the performance of the membrane synthesized in this paper is also investigated and the results revealed that the unique membrane internal structure can improve the OH? transportation efficiency. Furthermore, the ionic conductivity of P-(SBA10%-C) membrane is the highest (0.107S·cm?1) and the power density is the highest (354.8 mW cm?2) at 80 °C. By immersing P-(SBA10%-C) membrane in 6 mol L?1 KOH solution for 168 h, the conductivity at 80 °C only decreased by 2%, proving that P-(SBA10%-C) has a higher conductivity, good single cell performance and alkali stability.  相似文献   

2.
By choosing a triple block polymer, poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS), as the backbone and adopting a long side-chain double-cation crosslinking strategy, a series of SEBS-based anion-exchange membranes (AEMs) was successively synthesized by chloromethylation, quaternization, crosslinking, solution casting, and alkalization. The 70C16-SEBS-TMHDA membrane showed high OH conductivity (72.13 mS/cm at 80 °C) and excellent alkali stability (only 10.86% degradation in OH conductivity after soaking in 4-M NaOH for 1700 h at 80 °C). Furthermore, the SR was only 9.3% at 80 °C and the peak power density of the H2/O2 single cell was up to 189 mW/cm2 at a current density of 350 mA/cm2 at 80 °C. By introducing long flexible side chains into a polymer SEBS backbone, the structure of the hydrophilic–hydrophobic microphase separation in the membrane was constructed to improve the ionic conductivity. Additionally, network crosslinked structure improved dimensional stability and mechanical properties.  相似文献   

3.
At present, low conductivity and poor chemical stability are still the biggest challenges in the research on anion exchange membranes (AEMs). Herein, novel nanocomposite AEMs were first constructed by introducing quaternized carbon dots (QCDs) into the imidized polysulfone matrix (Im-PSU). QCDs were synthesized by quaternization of CDs derived from citric acid and ethylenediamine. The physicochemical properties and electrochemical properties of the nanocomposite AEMs were significantly improved due to the introduction of QCDs. It was found that the QCDs can improve the ion transport channel of the nanocomposite AEMs. Compared with pure Im-PSU AEM, the OH conductivity and physicochemical properties of the nanocomposite membranes were enhanced, and the OH conductivity of ImPSU-1.0%-QCDs composite membrane can reach 109.3 mS cm−1 at 80 °C, and 61.2% initial OH conductivity was maintained in 1.0 M NaOH solution for 500 h at 60 °C. Our research proves that the nanofiller with a small size can better improve the performance of composite AEMs, and provide an efficient strategy for future research work in the design and preparation of AEMs.  相似文献   

4.
In this work, an effective design strategy for anion exchange membranes (AEMs) incorporating ether-bond free and piperidinium cationic groups promote chemical stability. A series of poly (isatin-piperidium-terphenyl) based AEMs were synthesized by superacid catalyzed polymerization reaction, followed by quaternization. The effect of functionalization on the performance of poly (isatin-N-dimethyl piperidinium triphenyl) (PIDPT-x) AEMs was investigated. Highly reactive N-propargylisatin was introduced into the backbone to achieve high molecular weight polymers (ηa = 2.06–3.02 dL g1) leading to robust mechanical properties, as well as modulating 1.78–2.00 mmol g−1 of the ion exchange capacity (IEC) of the AEMs by feeding. Apart from that, the rigid non-ionized isatin-terphenyl segment provides AEMs improved dimensional stability with a swelling ratio of less than 12% at 80 °C. Among them, PIDPT-90 exhibited a higher OH conductivity of 105.6 mS cm−1 at 80 °C. The alkali-stabilized PIDPT-85 AEM was presented, in which OH conductivity retention maintained 85.6% in a 2 M NaOH at 80 °C after 1632 h. Afterward, the direct borohydride fuel cells (DBFC) with PIDPT-90 membrane as a separator showed an open-circuit voltage of 1.63 V and a peak power density of 75.5 mWcm−2 at 20 °C. This work demonstrates the potential of poly (isatin- N-dimethyl piperidinium triphenyl) as AEM for fuel cells.  相似文献   

5.
Herein, polyvinyl alcohol based anion exchange membranes (AEMs) doped with various cobalt and chloride salts are synthesized to investigate the structure-performance relationship of ion-doped AEMs systemically. The performances of ion-doped AEMs are found to be related to the hydrolysis degree (DH) of the doped anions and cations. It is found that cations with varying DH transformed into hydroxides with different sizes and dispersions, which plays a key role in determining the structures and properties of cation-doped AEMs. On the other hand, weak-acid anions remained in the AEMs after alkali immersion, hindering OH conduction and leading to the degradation of the anion-doped AEMs. High DH cations mildly react with the matrix and transform into more dispersive complexes, while low DH anions are replaced by OH.The direct borohydride fuel cell using CuCl2-doped AEM exhibits a maximum power density of 202.4 mW cm−2 at 30 °C.  相似文献   

6.
Introducing more ionic conductive groups in polymer-based anion exchange membranes (AEMs) can improve the ion exchange capacity and further overcome the disadvantage of low ion conductivity for AEMs. However, the excessive swelling of AEMs caused by exorbitant IEC value may reduce the dimensional stability of membranes. So it is extremely important to modify the structures of AEMs. Herein, we proposed a facile strategy to construct reduced graphene oxide (rGO) stable crosslinked polysulfone-based AEMs with improved properties. rGO was non-covalently modified with pyrene-containing tertiary amine small molecule and polymer via π-π interactions. The as-prepared functionalized rGO (TrGO and PrGO) as both cross-linkers and fillers to fabricate quaternized polysulfone (QPSU)-based AEMs (CQPSU-X-TrGO and CQPSU-X-PrGO) for the first time. The cross-linked membranes can tighten the internal packing structure, and enhance the alkaline resistance, ion conductivity and oxidative stability of AEMs. Furthermore, the hydrophilicity and flexibility of the CQPSU-X-PrGO membranes were significantly improved as compared with that of CQPSU-X-TrGO membranes. PrGO-crosslinked membranes (CQPSU-2%-PrGO, σOH = 117.7 mS/cm) displayed higher ionic conductivities at 80 °C than TrGO-crosslinked membranes (CQPSU-1%-TrGO, σOH = 87.2 mS/cm). The remarkable nanophase separation can be observed in the CQPSU-X-PrGO membranes by TEM. This feasible strategy can be efficiently used to prepare new type of crosslinked organic-inorganic nanohybrid AEMs with excellent chemical stability and high ionic conductivity.  相似文献   

7.
Covalent organic frameworks (COFs) used for anion exchange membrane fuel cells (AEMFCs) are commonly endowed with ion conductivity by post-synthesis modification. However, this method usually results in uneven distribution of functional groups, low functionalization and severe ion capacity fade. Limited by hydrophobic skeleton and relatively large particle size of COFs, the COFs doping amount of the composite membrane is not high. Here we design and synthesize a series of guanidinium cationic covalent organic nanosheets-based anion exchange composite membranes. The positively charged guanidinium group as a building block can induce COF-DhaTGCl self-exfoliation into a few layered nanosheets through strong interlayer repulsion. Then, the nanosheets were introduced into quaternary ammonium-functionalized poly(2,6-dimethyl-1,4-phenyl ether) (QPPO). A series of COF-DhaTGCl/PPO composite AEMs was prepared with the highest doping amount of 30 wt% by casting method. The porous structure and repeat cationic guanidinium units on the skeleton will expose ion sites to the target ones, providing faster OH diffusion kinetics in one-dimensional channels. The OH conductivity of COF-DhaTGCl/PPO-20 composite membrane can reach 148.65 mS/cm at 80 °C. Meanwhile, the composite membrane also exhibits enhanced mechanical strength and alkaline stability with the maximum stress strength of 37.3 MPa and the residual conductivity of 96.29% after immersion in 2 M NaOH solution at 60 °C for two weeks.  相似文献   

8.
In order to improve the alkali stability and OH conductivity of Poly (styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS)-based anion exchange membranes (AEMs), double cations with different alkyl intervals are remotely grafted onto the SEBS skeleton with hexyl as a linker through reactions such as acylation and ketone reduction. Then, SEBS-0.8Cn-0.2C6 cross-linked membranes were prepared to study the effect of the length of the alkyl chain between the dications on the ion transport and other properties. The OH conductivity of SEBS-0.8C4-0.2C6 cross-linked membrane can reach 85.27 mS cm−1 at 80 °C, and the peak power density can reach 225 mW cm−2 at a current density of 450 mA cm−2. As the dicationic spacer alkyl chains became longer, the swelling rate and water uptake of the membranes increased, resulting in significant improvements in mechanical properties and chemical stability. After soaking in 2 M NaOH solution at 80 °C for 1200 h, the conductivity of SEBS-0.8C6-0.2C6 decreased by only 5.76%. Optimizing the side chain structure of SEBS skeleton can effectively improve the comprehensive performance of AEM.  相似文献   

9.
The late transition metal catalyst system (η3-allyl)Pd(PPh3)Cl/Li[B(C6F5)4]·2.5Et2O (Li[FABA]) was used to catalyze 5-norbornene-2-methylenehexyl ether (NB-MHE) and 5-norbornene-2-methylene-(6-bromohexyl) ether (NB–O–Br) controllable addition copolymerization to obtain post-functionalized vinyl addition-type block copolymer aP(NB-O-Br-b-NB-MHE). 1,6-Bis(2-methylimidazole)hexane (Bis-MeIm) was used as a crosslinking agent to prepare a series of anion exchange membranes (AEMs) CL-aP(NB-O-Br-b-NB-MHE). The initial thermal decomposition temperature of the obtained addition-type polynorbornene-based AEM was about 250 °C. The AEM had moderate water uptake (WU) and swelling ratio (SR), and obvious micro-phase separation structure that could be observed from the AFM phase diagram. It could maintain high OH? conductivity (85.07 mS cm?1, 80 °C) and alkali resistance stability (soaking alkali for more than 500 h at 25 °C). In the single cell test of the H2/O2 fuel cell assembled by CL5-aP(NB-O-Br-b-NB-MHE), the peak power density was 177 mW cm?2.  相似文献   

10.
High ionic conductivity and excellent alkaline stability are very important for solid electrolyte. Therefore, spindle-shaped anion exchange membranes (AEMs) based on poly (arylene ether ketone) and 1-Bromo-N,N,N-trimethylhexane-6-aminium bromide (Br-QA) have been prepared. The obtained Br-QA can be grafted with poly (arylene ether ketone) main chains to form micro-phase separation structure enhancing the ionic conductivity. Especially, the grafting quaternary ammonium (QA) cation groups are separated by alkyl bromine endows the AEMs with alkaline stability features. Simultaneously, the OH conductivity of the QA-PAEK-0.6 obtained membranes is 0.046 S/cm under fully hydrated conditions at 60 °C. After immersing into 1 M NaOH alkaline solution for 15 days at 60 °C, the anionic conductivity still high to 0.03 S/cm. Meanwhile, the poly (arylene ether ketone) backbones provide excellent mechanical properties and the Br-QA cation groups also possess good thermal stability, which satisfy the requirement of wide applications.  相似文献   

11.
Crosslinking is a valid approach to enhance the mechanical and durability performance of anion exchange membranes (AEMs). Herein, a facile and effective self-crosslinking strategy, with no need for an additional crosslinker or a catalyzer, is proposed. A series of tunable self-crosslinking and ion conduction polynorbornene membranes are designed. The 5-norbornene-2-methylene glycidyl ether (NB-MGE) component which affords self-crosslinking enhances dimensional stability, while the flexible 5-norbornene-2-alkoxy-1-hexyl-3-methyl imidazolium chloride (NB-O-Im+Cl) hydrophilic unit contributes high conductivity. The crosslinking significantly decreases the water uptake, and water swelling ratio provides excellent solvent-resistance and enhances the thermal and mechanical properties. Additionally, crosslinked rPNB-O-Im-x AEMs exhibit desirable alkaline stability. Impressively, the rPNB-O-Im-30 (IEC = 1.377) shows a moderate ion conductivity (61.8 m S cm−1, 80 °C), with a suppressed water absorption and 88.17% initial OH conductivity is maintained after treated for 240 h with a 1.0 M NaOH solution at 60 °C. Suitably assessed of rPNB-O-Im-30 AEM reveals a 98.4 mW cm−2 peak power density reached at a current density of about 208 mA cm−2. The report offers a facile and effectual preparative technique for preparing dimensional and alkaline stable AEMs for fuel cells applications.  相似文献   

12.
High-performance anion exchange membranes (AEMs) are in need for practical application of AEM fuel cells. Novel branched poly(ether ether ketone) (BPEEK) based AEMs were prepared by the copolymerization of phloroglucinol, methylhydroquinone and 4,4′-difluorobenzophenone and following functionalization. The effects of the branched polymer structures and functional groups on the membrane's properties were investigated. The swelling ratios of all the membranes were kept below 15% at room temperature and had good dimensional stability at elevated temperatures. The branching degree has almost no effect on the dimensional change, but plays a great role in tuning the nanophase separation structure. The cyclic ammonium functionalized membrane showed a lower conductivity but a much better stability than imidazolium one. The BPEEK-3-Pip-53 membrane with the branching degree of 3% and piperidine functionalization degree of 53% showed the best performances. The ionic conductivity was 43 mS cm−1 at 60 °C. The ionic conductivity in 1 M KOH at 60 °C after 336 h was 75% of its initial value (25% loss of conductivity), and the IEC was 83% of its initial value (17% loss of IEC), suggesting good alkaline stability. The peak energy density (60 °C) of the single H2/O2 fuel cell with BPEEK-3-Pip-53 membrane reached 133 mW cm−2 at 260 mA cm−2.  相似文献   

13.
A kind of anion exchange membranes (AEMs) with CC bond end-group crosslinked structure was synthesized successfully. Unlike the traditional aliphatic AEMs, the AEMs were prepared in this work by a strategy to realize the CC bond thermal end-group crosslinking reaction, exhibiting an obvious microphase separation structure and a suitable dimensional stability. The well-defined ion channels constructed in the AEMs guarantee the fast OH conduction, as confirmed via physical and chemical characterization. The conductivity was dramatically enhanced due to the effective ion channels and increased ion exchange capacity. Among the as-prepared AEMs, the PHFB-VBC-DQ-80% AEM has a conductivity of 135.80 mS cm−1 at 80 °C. The single cell based on PHFB-VBC-DQ-80% can achieve a power density of 141.7 mW cm−2 at a current density of 260 mA cm−2 at 80 °C. The AEMs show good thermal stability verified by a thermogravimetric analyzer (TGA). Furthermore, the ionic conductivity of PHFB-VBC-DQ-80% only decreased by 7.1% after being soaked in a 2 M NaOH solution at 80 °C for 500 h.  相似文献   

14.
A novel benzonorbornadiene derivative (BenzoNBD-Bis(Im+Br-Im+I)) grafted by multi-imidazolium cations side-chains combined the rigid alkyl spacer and flexible alkoxy spacer is designed and synthesized. Then, the BenzoNBD-Bis(Im+Br-Im+I) monomer is copolymerized with the epoxy functionalized norbornene monomer (NB-MGE) and norbornene (NB) via ring-opening metathesis polymerization (ROMP) using Grubbs 3rd catalyst. All as-designed triblock copolymer membranes (TBCMs) show a thermal decomposition temperature beyond 310 °C and can well be dissolved in common organic solvents. The self-cross-linked structure of anion exchange membrane (AEM) is confirmed by gel fraction and tensile measurement. The water uptake and swelling ratio of TBCMs and AEMs are also measured. Major properties required for AEMs such as ion exchange capacity (IEC), hydroxide conductivity and alkaline stability are investigated. AEM-9.09 shows a hydroxide conductivity of 100.74 mS cm−1 at 80 °C. Besides, the micro-phase separated morphology of AEM is confirmed by TEM, AFM and SAXS analyses, AEMs formed distinct micro-phase separation. The as-prepared AEM exhibits a peak power density of 174.5 mW cm−2 at 365.1 mA cm−2 tested in a H2/O2 single-cell anion exchange membrane fuel cell (AEMFC) at 60 °C. The newly developed strategy of self-cross-linked multi-imidazolium cations long side-chains triblock benzonorbornadiene copolymer provides an effective method to develop high-performance AEMs.  相似文献   

15.
A new strategy to prepare high-conductivity anion exchange membranes (AEMs) is presented here. A series of phenolphthalein-based poly(arylene ether sulfone nitrile) multiblock AEMs has been synthesized by selectively grafting flexible ionic strings on hydrophilic segments to form ionic regions. Moreover, the phenolphthalein groups are introduced to force chains apart and create additional interchain spacing. In addition, the nitrile groups suspended on main chains are aimed at enhancing the anti-swelling behavior of as-prepared AEMs. Along these processes, well-defined phase separation has been attained, forming excellent ion-transport channels. The effective phase separation has been confirmed by atomic force microscopy. Finally, as-prepared AEMs exhibit a high hydroxide conductivity, ranging from 40.1 to 121.6 mS cm−1 in the temperature range of 30–80 °C, and superior ionic conductivity to IEC ratio at 80 °C. Furthermore, excellent thermal stability and desirable mechanical strength have been rendered by as-prepared AEMs. However, the alkaline stability of as-prepared AEMs requires further optimization.  相似文献   

16.
Low-cost biopolymer chitosan has received considerable attention in the field of anion exchange membranes (AEMs) because it can be easily quaternized and avoids the carcinogenic chloromethylation step. Simultaneously increasing the ionic conductivity and improving mechanical properties of quaternized chitosan (QCS) is key for its high-performance application. In this study, new composite AEMs consisting of QCS and functionalized carbon nanotubes (CNTs) were prepared. CNTs were coated with a thick silica layer onto which high-density quaternary ammonium groups were then grafted. The insulator silica coating effectively prohibits electron conduction among nanotubes and the grafted –NR3+ provides new OH conductive sites. Incorporating 5 wt% functionalized CNTs into the matrix enhanced ionic conductivity to 42.7 mS cm−1 (80 °C) which was approximately 2 times higher than that of pure QCS. The effective dispersion of CNTs and appropriate interfacial bonding between nanofiller and QCS improved the mechanical properties of AEMs, including both the strength and toughness of the composite membranes. An alkaline direct methanol fuel cell equipped with the composite membrane (5% functionalized CNTs loading) produced an maximum power density of 80.8 mW cm−2 (60 °C), which was 57% higher than that of pure QCS (51.5 mW cm−2). This study broadens the application of natural polymers and provides a new way to design and fabricate composite AEMs with both improved mechanical properties and electrochemical performance.  相似文献   

17.
The main issues facing the development of Anion Exchange Membranes (AEM) are the low hydroxide ion (OH) conductivity compared to protons (H+), and the thermal and chemical stability. Based on the its unique two-dimensional structure, graphene is estimated to be one of the best solutions for the hydrogen ions (H+ and OH) selectivity and conductivity improvement. This work presents the graphene-composite membranes (AEMGrs) preparation and characterization in comparison with commercial FAA3-20® and FAA3-30® membranes from Fumatech. Various amounts of commercial graphene were incorporated into the Fumion® FAA-3 in NMP (10%), solutions which were then used to fabricate new AEMs by the Doctor-Blade (DB) method. Commercial and graphene-composite AEMs were studied by infrared spectroscopy with Fourier Transformation (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), water uptake (WU), ion exchange capacity (IEC), and in plane four-points electrochemical impedance spectroscopy (4p-EIS). The results indicated that the composite membranes containing 50 mg of graphene exhibited an improved IEC (3.16 mmol g−1) and OH conductivity (113.27 mS cm−1) at 80 °C measured in 0.01 M KOH (pH = 12).  相似文献   

18.
A series of quaternary ammonium salt poly(ether ether ketone) AEMs containing long ether substituents are successfully prepared, and their chemical structure is confirmed by 1H NMR and FT-IR. The distinct microphase separation morphology of AEMs is observed by TEM. As the content of methylhydroquinone increases, the ion conductivity of AEMs gradually increases. When the content of methylhydroquinone increases to 80%, the hydroxide conductivity of PEEK-DABDA-80 membrane reaches 0.052 S/cm at 80 °C. Meanwhile, it exhibits excellent mechanical properties and anti-swelling ability, with tensile strength of 25 MPa, elongation at break of 8.12% and swelling ratio is only 17.4% at 80 °C. And AEMs also display the better thermal stability. After soaked in 1 M NaOH at 60 °C for 30 days, PEEK-DABDA-80 membrane shows acceptable ion conductivity of 0.021 S/cm at 60 °C. In view of these properties, PEEK-DABDA-x AEMs may display potential application as alkaline AEMs.  相似文献   

19.
A series of comb-shaped fluorene-based poly (arylene ether sulfone nitrile) (CFPESN–x) was synthesized as anion exchange membranes (AEMs). The well-designed architecture of fluorene-based main chains and comb-shaped C8 long alkyl side chains containing quaternary ammonium groups was responsible for the clear microphase-separated morphologies, as confirmed by small angle X-ray scattering and atomic force microscopy. Moreover, nitrile groups on main chains also showed a profound influence on membrane morphology and properties. CFPESN–x exhibited more interconnected ionic domains with increasing the nitrile group content resulting in higher conductivities and anti-swelling property. Then CFPESN–x exhibited high ionic conductivities in the range of 27.1–91.5 mS cm−1 from 30 to 80 °C and superior ratios of conductivity to swelling ratio at 80 °C at moderate IECs. Moreover, CFPESN–x also showed good mechanical properties and thermal stability, and optimizable alkaline stability and single cell performance.  相似文献   

20.
Cross-linking structure has been proven to be an effective approach to address the balance issue between ionic conductivity, dimensional stability and other properties of anion exchange membranes (AEMs). Here, a novel multi-cationic oligomer was synthesized from 1,4-diazabicyclo [2,2,2]octane and 1,6-dibromohexane, and subsequently used to prepare multi-cationic oligomer brushes-decorated graphene oxide (QBGO). The obtained QBGO was employed as the cross-linker to form cross-linked poly (arylene ether sulfone) (QPAES) AEMs by end-cap tertiary amine coupling reaction. Benefiting from the introduction of the multi-cations and flexible long-chain cross-linker structure, the cross-linked QPAES/QBGO membranes formed hydrophilic/hydrophobic phase-separation microstructures and well-defined ionic channels which are responsible for water uptake and ion transfer. As a result, the cross-linked QPAES/QBGO-2.0 membrane exhibited 1.90-fold higher ionic conductivity and better chemical stability than the control QPAES membrane. The QPAES/QBGO-2.0 membrane displayed a higher power density of 75.7 mW cm?2 than that of the control QPAES membrane (53.1 mW cm?2) in a H2/O2 fuel cell test. In a word, we propose that this novel design strategy holds broad prospects for the design of new polymer electrolyte membrane materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号