首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biogas valorization as fuel for internal combustion engines is one of the alternative fuels, which could be an interesting way to cope the fossil fuel depletion and the current environmental degradation. In this circumstance, an experimental investigation is achieved on a single cylinder DI diesel engine running under dual fuel mode with a focus on the improvement of biogas/diesel fuel combustion by hydrogen enrichment. In the present investigation, the mixture of biogas, containing 70% CH4 and 30% CO2, is blended with the desired amount of H2 (up to 10, 15 and 20% by volume) by using MTI 200 analytical instrument gas chromatograph, which flow thereafter towards the engine intake manifold and mix with the intake air. Depending on engine load conditions, the volumetric composition of the inducted gaseous fraction is 20–50% biogas, 2–10% H2 and 45–78% air. Near the end of the compression stroke, a small amount of diesel pilot fuel is injected to initiate the combustion of the gas–air mixture. Firstly, the engine was tested on conventional diesel mode (baseline case) and then under dual fuel mode using the biogas. Consequently, hydrogen has partially enriched the biogas. Combustion characteristics, performance parameters and pollutant emissions were investigated in-depth and compared. The results have shown that biogas enriched with 20% H2 leads to 20% decrease of methane content in the overall exhaust emissions, associated with an improvement in engine performance. The emission levels of unburned hydrocarbon (UHC) and carbon monoxide (CO) are decreased up to 25% and 30% respectively. When the equivalence ratio is increased, a supplement decrease in UHC and CO emissions is achieved up to 28% and 30% respectively when loading the engine at 60%.  相似文献   

2.
Environmental benefits are one of the main motivations encouraging the use of natural gas as fuel for internal combustion engines. In addition to the better impact on pollution, natural gas is available in many areas. In this context, the present work investigates the effect of hydrogen addition to natural gas in dual fuel mode, on combustion characteristics improvement, in relation with engine performance. Various hydrogen fractions (10, 20 and 30 by v%) are examined. Results showed that natural gas enrichment with hydrogen leads in general to an improved gaseous fuel combustion, which corresponds to an enhanced heat release rate during gaseous fuel premixed phase, resulting in an increase in the in-cylinder peak pressure, especially at high engine load (4.1 bar at 70% load). The highest cumulative and rate of heat release correspond to 10% Hydrogen addition. The combustion duration of gaseous fuel combustion phase is reduced for all hydrogen blends. Moreover, this technique resulted in better combustion stability. For all hydrogen test blends, COVIMEP does not exceed 10%. However, no major effect on combustion noise was noticed and the ignition delay was not affected significantly. Regarding performance, an important improvement in energy conversion was obtained with almost all hydrogen blends as a result of improved gaseous fuel combustion. A maximum thermal efficiency of 32.5%, almost similar to the one under diesel operation, and a minimum fuel consumption of 236 g/kWh, are achieved with 10% hydrogen enrichment at 70% engine load.  相似文献   

3.
In order to slow down the continuing environmental deterioration, regulations for pollutant emissions limitations are increasingly rigorous. The development of new alternative fuels for internal combustion engines is a very interesting solution not only to overcome the pollution problem but also because of the petroleum shortage. In this context, the present work investigates the improvement of a DI diesel engine operating at constant speed (1500 rpm) and under dual fuel mode with eucalyptus biodiesel and natural gas (NG) enriched by various H2 quantities (15, 25 and 30 by v%). The eucalyptus biodiesel quantity injected into the engine cylinder is kept constant, to supply around 10% of the engine nominal power, for all examined engine loads. The engine load is further increased using only the gaseous fuel (NG+H2), which is introduced with the intake air. The effect of H2/NG blending ratio on the combustion parameters, performance and pollutant emissions of the engine is investigated and compared with those of pure NG case. An important benefit in terms of brake specific fuel consumption, reaching a decrease of 4–10% with the 25% H2 blend compared to the pure NG case, is achieved. Concerning the pollutant emissions, NG enrichment with H2 is an efficient solution to enhance the combustion process and hence reduce carbon monoxide, unburned hydrocarbon and soot emissions at high loads where they are important for pure NG. However for the nitrogen oxide emissions, NG blending with H2 is attractive only at low and medium loads where their levels are lower than pure NG.  相似文献   

4.
The urge for cleaner and greener sources of energy is rising day by day. Developed countries are already in process of shifting their energy needs from conventional sources to non-conventional/renewable/green sources of energy. These developed countries are also trying to incorporate developing countries to join the battle against global warming and pollution. Examples, of some non-conventional sources of energy are nuclear energy, wind energy etc. One of such cleaner energy source is hydrogen. The high calorific value, availability in abundance and cleaner nature of hydrogen makes it an appropriate substitute for conventional source of energy. An engine using gaseous hydrogen is in the process of being developed. This may revolutionize the battle against pollution and global warming. Use of hydrogen in a diesel engine working on dual-fuel mode has been the interest of many researchers. However utilization of hydrogen fuel changes the ignition delay, combustion duration, peak mean temperature, peak pressure and other combustion parameters change. In the present work, such research works are examined and analyzed in detail. It is also shown, amount of inducted hydrogen dictates many engine parameters such as engine power, torque etc. a separate section is dedicated to study different emissions from the improvised engine. Lastly, it will be clear from the discussion that introduction of gaseous hydrogen to a diesel engine working on dual fuel mode will have optimistic effect on environment.  相似文献   

5.
The ability of ammonia to act as a hydrogen carrier, without the drawbacks of hydrogen gas-storage costs and low stability-renders it a potential solution to the decarbonisation of transport. This study combines both modelling and experimental techniques to determine the effect of varying the degree of aspiration of ammonium hydroxide (NH4OH) solution, at different engine loads, in the combustion of a compression ignition engine. Ignition delay was extended as ammonia injection increased, causing an increase in peak in-cylinder temperature, but generally lower combustion quality-increasing incomplete combustion products, while decreasing particle size. The higher peak in-cylinder temperatures generally correlated with higher nitrous oxide (NOx) emissions in the exhaust, though a fuel-bound nitrogen effect was apparent. Chemical kinetic modelling at equivalent conditions found increasing levels of unburnt ammonia with greater aspiration. Moreover, the ignitability of NH4OH was found to improve in simulations substituting diesel with hydrogen peroxide direct injection.  相似文献   

6.
In this work, an experimental investigation has been carried out to reduce the emission and improve the performance and combustion characteristics of direct injection compression ignition (DICI) engine fuelled with diesel and biogas in dual fuel mode. The anaerobic digestion method was used to produce biogas from tamarind seed and rice bran (TSRB). The diesel is injected by conventional injector setup and the biogas is inducted through the intake manifold with air in different flow rates such as 0.25, 0.50, 0.75, and 1.0 kg/hr. The emission, combustion, and performance test is conducted with a different flow rate of biogas with diesel and compared with diesel. Results show that the smoke and Nox emissions are lowered by 7.1and 23.27%, respectively compared to diesel mode.  相似文献   

7.
This paper describes an experimental study concerning the feasibility of using bio-oil namely turpentine obtained from the resin of pine tree. The emission and performance characteristics of a D.I. diesel engine were studied through dual fuel (DF) mode. Turpentine was inducted as a primary fuel through induction manifold and diesel was admitted into the engine through conventional fueling device as an igniter. The result showed that except volumetric efficiency, all other performance and emission parameters are better than those of diesel fuel with in 75% load. The toxic gases like CO, UBHC are slightly higher than that of the diesel baseline (DBL). Around 40–45% smoke reduction is obtained with DF mode. The pollutant Nox is found to be equal to that of DBL except at full load. This study has proved that approximately 75% diesel replacement with turpentine is possible by DF mode with little engine modification.  相似文献   

8.
The impact of dual fuel (diesel/hydrogen) on different performance aspects of CRDI diesel engines is investigated in this study. Amongst the fuel alternatives for IC (internal combustion) engines, the research described in this study recommended hydrogen as the least polluting and renewable in the long term. A CNG-LPG injector feeds hydrogen into the intake manifold, while diesel injectors pump pilot diesel to a DI engine adapted to hydrogen and diesel (dual-fuel mode). By maintaining 5.2 KW of consistent IP (Indicated Power) and engine speed at 1500 ± 10 rotations per minute (RPM), the hydrogen energy was varied in the dual fuel at 0% (100% diesel), 6%, 12%, 18% and 24%. With the increase in H2 energy proportion, a decrease (5.2% decrease at 24% HES) in the BSEC (brake specific energy consumption) and the engine's BTE (brake thermal efficiency) is improved (7.85% increase at 24% HES). When emissions are considered, indicated NOx increased (3.42%) while indicated CO2 (3.61%), CO (2.84%), and smoke (4.85%) decreased with an increase in the proportion of hydrogen. Along with this, it was noted that the peak HRR (heat release rate) of 69.8 J/deg and in-cylinder pressure of 80.8 bar which increased significantly with the increase in hydrogen rate.  相似文献   

9.
With higher rate of depletion of the non-renewable fuels, the quest for an appropriate alternative fuel has gathered great momentum. Though diesel engines are the most trusted power sources in the transportation industry, due to stringent emission norms and rapid depletion of petroleum resources there has been a continuous effort to use alternative fuels. Hydrogen is one of the best alternatives for conventional fuels. Hydrogen has its own benefits and limitations in its use as a conventional fuel in automotive engine system.In the present investigation, hydrogen-enriched air is used as intake charge in a diesel engine adopting exhaust gas recirculation (EGR) technique with hydrogen flow rate at 20 l/min. Experiments are conducted in a single-cylinder, four-stroke, water-cooled, direct-injection diesel engine coupled to an electrical generator. Performance parameters such as specific energy consumption, brake thermal efficiency are determined and emissions such as oxides of nitrogen, hydrocarbon, carbon monoxide, particulate matter, smoke and exhaust gas temperature are measured. Usage of hydrogen in dual fuel mode with EGR technique results in lowered smoke level, particulate and NOx emissions.  相似文献   

10.
With an alarming enlargement in vehicular density, there is a threat to the environment due to toxic emissions and depleting fossil fuel reserves across the globe. This has led to the perpetual exploration of clean energy resources to establish sustainable transportation. Researchers are continuously looking for the fuels with clean emission without compromising much on vehicular performance characteristics which has already been set by efficient diesel engines. Hydrogen seems to be a promising alternative fuel for its clean combustion, recyclability and enhanced engine performance. However, problems like high NOx emissions is seen as an exclusive threat to hydrogen fuelled engines. Exhaust gas recirculation (EGR), on the other hand, is known to overcome the aforementioned problem. Therefore, this study is conducted to study the combined effect of hydrogen addition and EGR on the dual fuelled compression ignition engine on a single cylinder diesel engine modified to incorporate manifold hydrogen injection and controlled EGR. The experiments are conducted for 25%, 50%, 75% and 100% loads with the hydrogen energy share (HES) of 0%, 10% and 30%. The EGR rate is controlled between 0%, 5% and 10%. With no substantial decrement in engine's brake thermal efficiency, high gains in terms of emissions are observed due to synergy between hydrogen addition and EGR. The cumulative reduction of 38.4%, 27.4%, 33.4%, 32.3% and 20% with 30% HES and 10% EGR is observed for NOx, CO2, CO, THC and PM, respectively. Hence, the combination of hydrogen addition and EGR is observed to be advantageous for overall emission reduction.  相似文献   

11.
A hydrogen fueled internal combustion engine has great advantages on exhaust emissions including carbon dioxide (CO2) emission in comparison with a conventional engine fueling fossil fuel. In addition, if it is compared with a hydrogen fuel cell, the hydrogen engine has some advantages on price, power density, and required purity of hydrogen. Therefore, they expect that hydrogen will be utilized for several applications, especially for a combined heat and power (CHP) system which currently uses diesel or natural gas as a fuel.A final goal of this study is to develop combustion technologies of hydrogen in an internal combustion engine with high efficiency and clean emission. This study especially focuses on a diesel dual fuel (DDF) combustion technology. The DDF combustion technology uses two different fuels. One of them is diesel fuel, and the other one is hydrogen in this study. Because the DDF engine is not customized for hydrogen which has significant flammability, it is concerned that serious problems occur in the hydrogen DDF engine such as abnormal combustion, worse emission and thermal efficiency.In this study, a single cylinder diesel engine is used with gas injectors at an intake port to evaluate performance swung the hydrogen DDF engine with changing conditions of amount of hydrogen injected, engine speed, and engine loads. The engine experiments show that the hydrogen DDF operation could achieve higher thermal efficiency than a conventional diesel operation at relatively high engine load conditions. However, it is also shown that pre-ignition with relatively high input energy fraction of hydrogen occurred before diesel fuel injection and its ignition. Therefore, such abnormal combustion limited amount of hydrogen injected. Fire-deck temperature was measured to investigate causal relationship between fire-deck temperature and occurrence of pre-ignition with changing operative conditions of the hydrogen DDF engine.  相似文献   

12.
The crude oil graduate depletion, as well as aspects related to environmental pollution and global warming instigated many researches concerning alternative fuels. Natural gas (NG) is one of the most attractive available fuels. A promising technique for its use in internal combustion engines is the dual fuel concept. One of the main problems with this technique is that, at low loads, the engine efficiency decreases compared to conventional diesel. The unburned hydrocarbons and carbon monoxide emissions are also higher in dual fuel mode. An effective method to compensate the demerits of limited lean-burn ability and slow burning velocity of NG is to mix it with a fuel that possesses wide flammability limit and fast burning velocity. Hydrogen (H2) is thought to be the best gaseous candidate for natural gas.In the present work, NG enrichment with various H2 blends is investigated as a technique for improving dual fuel mode, especially at low loads. Impact on engine performance and emissions is experimentally examined. Total BSFC is considerably reduced. An important benefit in terms of BTE, reaching to increase a 12% with the 10%H2 blend compared to the pure NG case, is also achieved. THC and CO emissions are in general reduced as a result of the improvement of gaseous fuel utilization. CO2 emissions are also in general reduced. Even though a slight increase is in overall observed for NOx emissions, it's almost insignificant.  相似文献   

13.
An investigation on the ignition delay of a dual fuel engine operating with methanol ignited by pilot diesel was conducted on a TY1100 direct-injection diesel engine equipped with an electronic controlled methanol low-pressure injection system. The experimental results show that the polytropic index of compression process of the dual fuel engine decreases linearly while the ignition delay increases with the increase in methanol mass fraction. Compared with the conventional diesel engine, the ignition delay increment of the dual fuel engine is about 1.5° at a methanol mass fraction of 62%, an engine speed of 1600 r/min, and full engine load. With the elevation of the intake charge temperature from 20°C to 40°C and then to 60°C, the ignition delay of the dual fuel engine decreases and is more obvious at high temperature. Moreover, with the increase in engine speed, the ignition delay of the dual fuel engine by time scale (ms) decreases clearly under all engine operating conditions. However, the ignition delay of the dual fuel engine increases remarkably by advancing the delivery timing of pilot diesel, especially at light engine loads. __________ Translated from Journal of Harbin Institute of Technology, 2007, 41(7): 784–787,796 [译自: 西安交通大学学报]  相似文献   

14.
In the present study, the energy and exergy analysis were carried out for a Deutz dual fuel (diesel + hydrogen) engine at different gas fuel-air ratios (øH2 = 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8) and constant diesel fuel amount (6.48 mg/cycle). The energy analysis was performed during a closed cycle by using a three-dimensional CFD code and combustion modeling was carried out by Extend Coherent Flame Model- Three Zone model (ECFM-3Z). For the exergy analysis, an in-house computational code is developed, which uses the results of the energy analysis at different fuel-air ratios. The cylinder pressure results for natural gas/diesel fuelled engine are verified with the experimental data in the literature, which shows a good agreement. This verification gives confidence in the model prediction for hydrogen- fuelled case. With crank position at different gas fuel-air ratios, various rate and cumulative exergy components are identified and calculated separately. It is found that as gas fuel-air ratio increases from 0.3 to 0.8, the exergy efficiency decreases from 43.7% to 34.5%. Furthermore, the value of irreversibility decreases from 29.8% to 26.6% of the mixture fuels chemical exergies. These values are in good agreement with data in the literature for dual fuel engines.  相似文献   

15.
During the past decades, the diesel engine has been through times of upheaval, boom and bust. At the beginning of the century, almost 50% of the new vehicle registrations in the European market were diesel-powered. However, the news of deadly diesel NOx emissions supported by the diesel emission scandals caused a shock to the diesel engine market, and the sustainability of the diesel engine is currently in dispute.Recently major automotive manufacturers announced the development of diesel-powered vehicles with negligible NOx emissions. Moreover, the NOx emissions production is of lower concern for heavy-duty, marine or power generations applications where the implementation of advanced aftertreatment systems is feasible. However, despite the tackle of NOx emissions, the decarbonisation of the automotive, marine and power generation markets is mandatory for meeting greenhouse gas emissions targets and limiting global warming.The decarbonisation of the diesel engine can be achieved by the implementation of a carbon-free fuel such as ammonia. This paper provides a detailed overview of ammonia as a fuel for compression ignition engines. Ammonia can be combusted with diesel or any other lower autoignition temperature fuel in dual-fuel mode and lead to a significant reduction of carbon-based emissions. The development of advanced injection strategies can contribute to enhanced performance and overall emissions improvement. However, ammonia dual-fuel combustion currently suffers from relatively high unburned ammonia and NOx emissions because of the fuel-bound nitrogen. Therefore, the implementation of aftertreatment systems is required. Hence, ammonia as a compression ignition fuel can be currently seen as a feasible solution only for marine, power generation and possibly heavy-duty applications where no significant space constraints exist.  相似文献   

16.
An experimental investigation on DI diesel engine with hydrogen fuel   总被引:1,自引:0,他引:1  
The internal combustion engines have already become an indispensable and integral part of our present day life style, particularly in the transportation and agricultural sectors [Nagalingam B. Properties of hydrogen. In: Proceedings of the summer school of hydrogen energy, IIT Madras, 1984]. Unfortunately the survival of these engines has, of late, been threatened due to the problems of fuel crisis and environmental pollution. Therefore, to sustain the present growth rate of civilization, a nondepletable, clean fuel must be expeditiously sought. Hydrogen exactly caters to the specified needs. Hydrogen, even though “renewable” and “clean burning”, does give rise to some undesirable combustion problems in an engine operation, such as backfire, pre-ignition, knocking and rapid rate of pressure rise [Srinivasa Rao P. Utilization of hydrogen in a dual fueled engine. In: Proceedings of the summer school of hydrogen energy, IIT Madras, 1984; Siebers DL. Hydrogen combustion under diesel engine conditions. Hydrogen Energy 1998;23:363–71]. The present investigation compares the performance and emission characteristics of a DI diesel engine with gaseous hydrogen as a fuel inducted by means of carburation technique and timed port injection technique (TPI) along with diesel as a source of ignition [Swain N, Design and testing of dedicated hydrogen-fueled engine. SAE 961077, 1996]. In the present study the specific energy consumption, NOx emission and the exhaust gas temperature increased by 6%, 8% and 14%, respectively, and brake thermal efficiency and smoke level reduced by 5% and 8%, respectively, using carburation technique compared to baseline diesel. But in the TPI technique, the specific energy consumption, exhaust gas temperature and smoke level reduced by 15%, 45% and 18%, respectively. The brake thermal efficiency and NOx increased by 17% and 34%, respectively, compared to baseline diesel. The emissions such as HC, CO, and CO2 is very low in both carburation and TPI techniques compared baseline diesel.  相似文献   

17.
Ignition delay (ID) is one of the important parameters that make influenced on the combustion process inside the cylinder. This ignition delay affects not only the performances but also the noise and emissions of the engine. In this regards the experiments were conducted on single cylinder 4–stroke compression ignition research diesel engine, power 3.50 kW at constant speed 1500 rpm Kirloskar model TV1 with base fuel as diesel and hydrogen as secondary fuel with and without Di-tertiary-butyl-peroxide (DTBP). Experiments were conducted to measure the ignition delay of the dual fuel diesel (DFD) engine at different load conditions and substitution of diesel by hydrogen with or without DTBP and then it was compared with predicted ID given by Hardenberg-Hase equation and modified Hardenberg-Hase equation.The experimental values of ignition delay were compared with theoretical ignition delay which was predicted on the basis of Hardenberg-Hase equation by considering mean cylinder temperature, pressure, activation energy and cetane number and variations are found in between 6.60% and 21.22%. While, the Hardenberg-Hase equation was modified (by considering variation in activation energy) for DFD engine working on diesel as primary fuel and hydrogen as secondary fuel shows variations 1.20%–11.96%. Furthermore, with DTBP it gives variation up to 18.01%. It was found that ID decreases with increase in percentage of DTBP and hydrogen in air-fuel mixture. This might be due to the cetane improver nature of DTBP, pre-ignition reaction rate and energy release rate of hydrogen fuel. The polytropic index get increased by addition of (Di-tert butyl peroxide) DTBP. Similarly, 5% Di tertiary butyl peroxide reduces Ignition delay.  相似文献   

18.
The prime intention of this work is to provide a maximum replacement for diesel using hydrogen in a common rail direct injection equipped diesel engine. The experiment was conducted upto 5.2 kW brake power constant speed water-cooled engine. In the combustion chamber, diesel fuel was injected at a crank angle of 23⁰ bTDC, making it an ignitor for the premixed mixture of hydrogen and air. Hydrogen is injected at 6 different proportions ranging from 6 to 36 liter per min (LPM). The air and hydrogen gas were mixed homogeneously using the timed manifold injection technique, which was controlled through the in-house PC based data acquisition (DAQ) program developed on data factory. The electronic control unit helps to induct the hydrogen for a period of 211⁰ CA during the suction stroke. Performance, emission and combustion studies were made with the different levels of hydrogen injection, which proves that the 30 LPM of hydrogen provide the best results. Further, 30.65% improvement was achieved in brake thermal efficiency with 23.48% decreased brake specific energy consumption. This also helped to reduce the harmful emissions like CO, CO2, UHC and smoke by 22.3%, 14%, 32.74% and 43.86%, respectively. However, oxides of nitrogen emission level was increased by 7.3% compared to that of the diesel fuel at its maximum power output setting. The duration of the combustion also reduced due to the higher flame speed character of hydrogen. Thus, the overall results conclude that the addition of hydrogen improved the performance factors and reduced all the emission values of the common rail direct injection diesel engine at an optimum level of 30 LPM.  相似文献   

19.
The mathematical models to predict pressure, net heat release rate, mean gas temperature, and brake thermal efficiency for dual fuel diesel engine operated on hydrogen, LPG and mixture of LPG and hydrogen as secondary fuels are developed. In these models emphasis have been given on spray mixing characteristics, flame propagation, equilibrium combustion products and in-cylinder processes, which were computed using empirical equations and compared with experimental results. This combustion model predicts results which are in close agreement with the results of experiments conducted on a multi cylinder turbocharged, intercooled gen-set diesel engine. The predictions are also in close agreement with the results on single cylinder diesel engine obtained by other researchers. A reasonable agreement between the predicted and experimental results reveals that the presented model gives quantitatively and qualitatively realistic prediction of in-cylinder processes and engine performances during combustion.  相似文献   

20.
This paper presents a detailed experimental investigations on the combustion parameters of a 4 cylinder (turbocharged and intercooled) 62.5 kW gen-set duel fuel diesel engine (with hydrogen and LPG as secondary fuels). A detailed account on maximum rate of pressure rise, peak cylinder pressure, heat release rate in first phase of combustion and combustion duration at a wide range of load conditions with different gaseous fuel substitutions has been presented in the paper. When 30% of hydrogen alone is used as secondary fuel, maximum rate of pressure rise increases by 0.82 bar/deg CA as compared to pure diesel operation, while, peak cylinder pressure and combustion duration increase by 8.44 bar and 5 deg CA respectively. When 30% of LPG alone is used as secondary fuel, the enhancements in maximum rate of pressure rise, peak cylinder pressure and combustion duration are found to be 1.37 bar/deg CA, 6.95 bar and 5 deg CA respectively. It is also found that heat release rate in first phase of combustion reduces at all load conditions as compared to the pure diesel operation in both types of fuel substitutions.One important finding of the present work is significant enhancement in performances of dual fuel engine when hydrogen-LPG mixture is used as the secondary fuel. The highlight of this case is that when the mixture of LPG and hydrogen (40% in the ratio LPG: hydrogen = 70:30) is used as secondary fuel, maximum rate of pressure rise (by 0.88 bar/deg CA) and combustion duration reduces (by 4 deg CA), while, peak cylinder pressure and heat release rate in first phase of combustion increase by 5.25 bar and 35.24 J/deg CA respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号