首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrocalumite derived catalysts prepared by co-precipitation with non-noble metal Nickel(Ni) as main active site were tested in ethanol steam reforming, and the influences of Ni (5,10,15 wt%) content were mainly tested in this research. Meanwhile, the physicochemical properties of the prepared catalysts were analyzed through different characterizations including BET, X-ray diffraction (XRD), H2-temperature programmed reduction (H2-TPR) and CO2-temperature programmed desorption (TPD). As the Ni increased, the specific surface area, crystallite size of Ni, reducibility and basicity of catalysts were changed, which further affected their activities. On this basis, the best performance in this catalytic system was presented when Ni in the catalysts was 15 wt%, the ethanol conversion and hydrogen yield could reach almost 100% and 85% at 650 °C respectively. Thus, this kind of catalyst is effective for ethanol steam reforming.  相似文献   

2.
Ni and Co catalysts supported on ITQ-6 zeolite have been synthesized and evaluated in the steam reforming of ethanol (SRE). Catalysts were also characterized by means of N2 adsorption-desorption, XRD, H2-TPR, and H2-chemisorption. ITQ-6 containing Co (Co/ITQ-6) presented a higher conversion of ethanol and production of hydrogen than ITQ-6 containing Ni (Ni/ITQ-6). The lower size of the metallic cobalt particles shown in Co/ITQ-6 seems to be the major responsible of its higher catalytic performance. Regarding the reaction by-products (CO, CH4, C2H4O and CO2), Co/ITQ-6 showed the lowest selectivity at medium and high temperatures (773 and 873 K). At low reaction temperatures (673 K) the dehydrogenation reaction predominates in the Co/ITQ-6, what it is supported by the high concentration of acetaldehyde detected at this temperature. In the case of the Ni/ITQ-6 the main side reaction at 673 K seems to be the methanation reaction since large concentrations of methane are detected. Stability studies were also carried out showing lower deactivation of Co/ITQ-6 at large reaction times (24 h). Characterization of the exhausted catalysts after reaction showed the presence of coke in both catalysts. Nevertheless, Co/ITQ-6 presented the lowest coke deposition. In addition, Co/ITQ-6 exhibited the lowest metal sinterization, what could be also account for the lower deactivation exhibited by this sample. This fact could be related to the higher interaction between the cobalt metallic particles and the ITQ-6 support as the H2-TPR studies demonstrate.  相似文献   

3.
The Co/CeO2 catalysts obtained by co-precipitation method were used in the steam reforming of ethanol (SRE). The influence of cobalt active phase content (15–29 wt%), the reaction temperature (420–600 °C) and H2O/EtOH molar ratio (12/1 and 6/1) were examined. The physicochemical characterization revealed that the cobalt content of the catalyst influences the metal-support interaction which results in catalyst performance in SRE process. The differences between catalytic properties of the Co/CeO2 catalysts with different metal loading in SRE process decayed at 500 °C for H2O/EtOH = 12/1. The best performance among the tested catalysts showed the 29Co/CeO2 catalyst with the highest cobalt content, exhibiting the highest ethanol conversion, selectivity to two most desirable products and the lowest selectivity to by-products in comparison with catalysts containing smaller amount of metal. Its catalytic properties results probably from its unique physicochemical properties, i.e this catalyst contains large amount of cobalt but the metal crystallites are relatively small. Regardless cobalt content, an increase in the water-to-ethanol molar ratio in the feed increased the concentration of hydrogen an carbon dioxide and decreased formation of carbon monoxide, acetone, aldehyde and ethylene.  相似文献   

4.
Hydrocalumite derived nickel (Ni) catalysts with different loading of magnesium (Mg) (7.5/10/15 wt%, as promoters) were for the first time prepared and tested for ethanol steam reforming (ESR) in this work. The catalytic performances of different Mg promoted catalysts were mainly evaluated in the temperature range between 550 and 700 °C as determined by thermodynamic simulation. Experimental results showed that the optimal reaction temperature was 650 °C in terms of the hydrogen yields for these ESR catalysts, especially for 15Ni7.5Mg/HCa which presented a remarkable catalytic performance. Its hydrogen yields reached 90% while ethanol was almost fully converted at 650 °C. Based on the characterization results, it's believed that 15Ni7.5Mg/HCa with a certain amount of Mg loading can get the smallest Ni0 crystallite sizes, better H2 reducibility and suitable basicities on strong basic sites. The catalytic performances of ESR catalysts were mainly related to the Ni0 crystallite size, reducibility and basicity for the prepared hydrocalumites derived Ni catalysts, and 15Ni7.5Mg/HCa could be considered as one of the best catalysts for ESR.  相似文献   

5.
Four samples of Zn-hydrotalcite containing different amounts of Co (5, 10, 20, and 30 wt%) have been synthesized and tested in the steam reforming of ethanol. The best results were obtained with the sample containing 20 wt% of Co (20CoHT), with a complete conversion of ethanol and yields to hydrogen close to the equilibrium (73 mol.%). The physicochemical characterization of the samples by DRX, BET area and TPR indicates that the excellent performance exhibited by the sample containing 20 wt% of Co is due to the higher percentage of reduced cobalt and lower crystallite size of metallic cobalt present in this sample (11 nm). Additional studies have been carried out to improve the stability of this catalytic material against deactivation by the incorporation of 1 wt% of La. Stability studies were carried out using an industrial alcoholic waste as feed. Deactivation after 24 h of reaction time was found lower for the catalyst containing La (20CoLaHT), confirming the positive effect of lanthanum on the catalytic stability. The results presented here show that it is possible to prepare a catalyst based on Co supported on Zn-hydrotalcite and promoted with La with improved ethanol conversion, high hydrogen selectivity, and high stability to produce hydrogen by the steam reforming of an industrial alcoholic waste without commercial value.  相似文献   

6.
In the present work, hydrotalcite-like compound precursor for preparing mixed oxide catalyst was successfully synthesized by a novel method, which was a combination of the reverse microemulsion and coprecipitation methods. It was observed that the precursor obtained from the above method possessed superior characteristics for preparing mixed oxide catalyst used in ethanol steam reforming (ESR). Furthermore, for comparison, catalysts prepared from conventional coprecipitation and impregnation methods had been characterized together with the catalyst prepared from the new method. Besides ICP, BET, X-ray diffraction (XRD), temperature-programmed reduction (TPR), H2-TPD, TG, and TEM analytic techniques, catalytic performance for ESR was also investigated. The results of XRD and TPR indicated that a solid solution phase existed in the catalysts obtained from reverse microemulsion and coprecipitation methods, while spinel phase together with solid solution were observed in the catalyst obtained from the impregnation method. The high BET surface area of the catalyst obtained from the reverse microemulsion method enhanced the dispersion and the surface area of nickel, which improved the catalyst performance. From TEM images, the aggregated Ni could be found in the catalyst obtained from the impregnation method, while the hydrotalcite-like compound precursors prepared from reverse microemulsion and coprecipitation methods produced homogeneously distributed active Ni metal species. The catalyst obtained from reverse microemulsion exhibited the best activity, stability, and least carbon deposition because of the formation of hydrotalcite-like compound precursor, uniform dispersion of active Ni metal species, and much more surface area supporting the active Ni metal sites.  相似文献   

7.
The catalytic activity of calcium hydroxyapatite (HAp) supported cobalt nanoparticles in ethanol steam reforming (SRE) was investigated. Co was supported on hydrothermally prepared HAp by incipient wetness impregnation method. Co/HAp catalysts were characterized through XRD, FT-IR and Raman spectroscopy, TEM, SEM/EDS, N2 physisorption, TG and TPR-H2. Results showed that spinel cobalt oxide is reduced to CoO and Co and these species are responsible for catalytic activity for hydrogen production via SRE process. The main reactions over Co/HAp are incomplete steam reforming and dehydrogenation of ethanol. Reforming experiment over pre-reduced sample indicated a negative impact of H2 treatment on hydrogen production. The best catalytic properties (YH2 and CEtOH) were obtained over 5%Co/HAp catalyst.  相似文献   

8.
In order to assure good catalyst stability and low carbon deposition rate, in the present work three catalysts having different CeO2 loadings (CeO2/SiO2 ratio ranging between 25 and 40%) were prepared by depositing Pt and Ni over a CeO2/SiO2 mixed support and tested for oxidative steam reforming of ethanol. All the catalysts exhibited total ethanol conversion between 350 and 600 °C; however, the CeO2/SiO2 ratio strongly affected catalyst stability at 500 °C: despite the similar hydrogen yields (almost 40%), the best sample, which displayed the lowest carbon formation rate (1.2 × 10−6 gcoke/(gcat*gcarbon,fed*h)) and stable behaviour for 135 h, was the 3wt%Pt-10wt%Ni/30CeO2/SiO2. The lower dimension for Ni crystallites was measured over the latter exhausts catalyst and the dependence of carbon formation rate form such parameter was identified. Anyway, the carbon selectivities measured over all the investigated samples were significantly lower than the values reported in the recent literature.  相似文献   

9.
The effect of nickel precursor on Ni/SBA-15 catalysts was studied in ethanol steam reforming (ESR) for hydrogen production. These catalysts were prepared via incipient-wetness impregnation method using nickel nitrate and nickel citrate precursors, respectively (denoted as Ni/SBA-15(N) and Ni/SBA-15(C), respectively), and characterized by various techniques including H2-TPR, XRD, TEM and TG. It was found that the use of nickel citrate precursor, compared to nickel nitrate precursor, could greatly strengthen the NiO-support interaction and promote the homogeneous distribution of nickel species, to obtain the small nickel particles with high dispersion. After a 25 h time-on-stream test, much lower coke deposition was formed over Ni/SBA-15(C) than Ni/SBA-15(N). Moreover, NiCx species had be found over the used Ni/SBA-15(C), in which the carbon could be removed easily at lower temperature to exposure the active Ni sites; While carbon nanofibers with regular graphite-structure were the primary coke species over the spent Ni/SBA-15(N), which was difficultly remove and thus covered the active Ni sites easily. Due to these, Ni/SBA-15(C) displayed the higher catalytic activities and better stabilities in ESR than Ni/SBA-15(N). In summary, nickel citrate is an excellent precursor for the preparation of Ni/SBA-15 catalysts with high dispersion and strong interaction.  相似文献   

10.
To prepare high-performance Ethanol Steam Reforming (ESR) catalyst, copper and magnesium were added into NiAl Layered Double Hydroxides (NiAl-LDHs) employing the coprecipitation method as the second and third metals for reducing the sintering of nickel active components and controlling the acid sites. Afterward, NiCuMgAl-LDHs were wrapped on the SiO2 nanospheres to form a spherical layered structure. The results showed that, compared with the NiAl catalyst, after adding Cu metal, resulting from the synergistic effect of Ni–Cu, the ethanol conversion rate increased at different temperature ranges, and ethanol could be wholly converted at 500 °C. With the addition of Mg for neutralize the acid sites of the catalyst, no ethylene, ethanol dehydration product, was produced over the entire reaction temperature range (350–600 °C). NiCuMgAl-LDHs grows vertically on the surface of SiO2 because its hierarchical layered structure is beneficial to inhibit the collapse of laminates, which makes the active components of Ni on SiO2@NiCuMgAl more dispersed and exists edge and corner sites with few coordinative unsaturated active sites, thus exposing of active components and then enhanced performance. Finally, through the catalyst composition and structure optimization, the ethanol was converted entirely, and the stable hydrogen production was realized in the 19 h test.  相似文献   

11.
This work studies the effects of Ce4+ and/or La3+ on NiO/Al2O3 oxygen carrier (OC) on chemical looping steam reforming of ethanol for hydrogen production - alternating between fuel feed step (FFS) and air feed step (AFS). Suitable amount of Ce- and La-doping increases OC carbon tolerance. The solubility limit is found at 50 mol% La in solid solution. At higher La-doping, La2O3 disperses on the surface and adsorbs CO2 forming La2O2CO3 during FFS. From the 1st cycle, 12.5 wt%Ni/7 wt%La2O3-3wt%CeO2–Al2O3 (N/7LCA) displays the highest averaged H2 yield (3.2 mol/mol ethanol) with 87% ethanol conversion. However, after the 5th cycle, 12.5 wt%Ni/3 wt%La2O3-7wt%CeO2–Al2O3 (N/3LCA) exhibits more stability and presents the highest ethanol conversion (88%) and H2 yield (2.7 mol/mol ethanol). Amorphous coke on the OCs decreases with increasing La3+ content and can be removed at 500 °C during AFS; nevertheless, fibrous coke and La2O2CO3 cannot be eliminated. Therefore, after multiple redox cycles, highly La-doped OCs exhibits rather low stability.  相似文献   

12.
Oxidative steam reforming of ethanol (OSRE) was studied over Rh/CeO2/Al2O3 catalysts in a micro-channel reactor. First, the catalyst support, Al2O3, was deposited on to the metallic substrate by washcoating and then the CeO2 and active metal were sequentially impregnated. The effect of support composition as well as active metal composition on oxidative steam reforming of ethanol in a micro-channel reactor was studied at atmospheric pressure, with water to ethanol molar ratio of 6 and oxygen to ethanol molar ratio ranging from 0.5 to 1.5, over a temperature range of 350-550 °C. Ceria added to 1%Rh/Al2O3 showed higher activity and selectivity than 1%Rh/Al2O3 alone. Out of the various catalysts tested, 2%Rh/20%CeO2/Al2O3 performed well in terms of activity, selectivity and stability. The OSRE performance was compared with that of SRE over 2%Rh/20%CeO2/Al2O3 catalyst at identical operating conditions. Compared to SRE, the activity in OSRE was higher; however the selectivity to desired products was slightly lower. The H2 yield obtained in OSRE was ∼112 m3 kg−1 h−1, as compared to ∼128 m3 kg−1 h−1 in SRE. The stability test performed on 2%Rh/20%CeO2/Al2O3 at 500 °C for OSRE showed that the catalyst was stable for ∼40 h and then started to deactivate slowly. The comparison between packed bed reactor and micro-channel reactor showed that the micro-channel reactor can be used for OSRE to produce hydrogen without any diffusional effects in the catalyst layer.  相似文献   

13.
The deactivation by coke deposition of Ni and Co catalysts in the steam reforming of ethanol has been studied in a fluidized bed reactor under the following conditions: 500 and 700 °C; steam/ethanol molar ratio, 6; space time, 0.14 gcatalyst h/gethanol, partial pressure of ethanol in the feed, 0.11 bar, and time on stream up to 20 h. The decrease in activity depends mainly on the nature of the coke deposited on the catalysts, as well as on the physical–chemical properties (BET surface area, pore volume, metal surface area) of the catalysts. At 500 °C (suitable temperature for enhancing the WGS reaction, decreasing energy requirements and avoiding Ni sintering), the main cause of deactivation is the encapsulating coke fraction (monoatomic and polymeric carbon) that blocks metallic sites, whereas the fibrous coke fraction (filamentous carbon) coats catalyst particles and increases their size with time on stream with a low effect on deactivation, especially for catalysts with high surface area. The catalyst with 10 wt% Ni supported on SiO2 strikes a suitable balance between reforming activity and stability, given that both the capability of Ni for dehydrogenation and C–C breakage and the porous structure of SiO2 support enhance the formation of filamentous coke with low deactivation. This catalyst is suitable for use at 500 °C in a fluidized bed, in which the collision among particles causes the removal of the external filamentous coke, thus minimizing the pore blockage of the SiO2. At 700 °C, the coke content in the catalyst is low, with the coke being of filamentous nature and with a highly graphitic structure.  相似文献   

14.
Hydrogen production via the steam reforming of biomass-derived ethanol is a promising environmental alternative to the use of fossil fuels and a means of clean power generation. A microkinetic modelling study of ethanol steam reforming (ESR) on Nickel is presented for the first time and validated with minimal parameter fitting against experimental data collected over a Ni/SiO2 catalyst. The thermodynamically consistent model utilises Transition State Theory and the UBI-QEP method for the determination of kinetic parameters and is able to describe correctly experimental trends across a wide range of conditions. The kinetically controlling reaction steps are predicted to occur in the dehydrogenation pathway of ethanol, with the latter found to proceed primarily via the formation of 1-hydroxyethyl. C-C bond cleavage is predicted to take place at the ketene intermediate leading to the formation of CH2 and CO surface species. The latter intermediates proceed to react according to methane steam reforming and water-gas shift pathways that are enhanced by the presence of water derived OH species. The experimentally observed negative reaction order for water is explained by the model predictions via surface saturation effects of adsorbed water species. The model results highlight a possible distinction between ethanol decomposition pathways as predicted by DFT calculations on Ni close-packed surfaces and ethanol steam reforming pathways at the broad range of experimental conditions considered.  相似文献   

15.
In this paper glycerol steam reforming over Ni catalysts supported on bare CeO2 and Al2O3, and CeO2-promoted Al2O3 to produce H2 was studied. The catalytic activity results for the NiAl5Ce and NiAl10Ce catalysts showed that the incorporation of low ceria loadings enhances the activity of the NiAl catalyst prepared using a similar composition to the commercial Ni/Al2O3 catalysts. The catalyst surface characterization revealed that the good behaviour of the NiAl5Ce and the NiAl10Ce catalysts depends on the stabilization of Ni° particles which is promoted by the formation of nickel–ceria interactions. The increase of ceria content reduced the capacity of the NiAl20Ce catalyst to convert intermediate oxygenated hydrocarbons into H2.  相似文献   

16.
Ethanol steam reforming was studied over a supported Ir/CeO2 catalyst in a micro-channel structured reactor. The catalyst coating was deposited on the channel walls and showed a remarkably high homogeneity and an excellent adherence to the stainless steel substrate, leading to stable performance during long-term runs. Hydrogen yields exceeding 40 LH2 gcat−1 h−1 were achieved during testing with partial ethanol conversion of 65% and a residence time in the order of a few milliseconds. This hydrogen productivity was found significantly higher than in a comparable conventional fixed-bed reactor hence being extremely promising for hydrogen production in micro fuel cell applications.  相似文献   

17.
Producing hydrogen from ethanol steam reforming (ESR) is a carbon-neutral and environment-friendly method, which has been expected to gradually reduce excessive emission of environmental pollution and over-exploitation of fossil resources. Low-cost nickel (Ni) and cobalt (Co) are considered the most promising active metals for industrial ESR catalysts, with the challenge that carbon deposition on such catalysts causes active site loss which limits their application. In this review, comprehensive knowledge on the ESR reaction mechanism and carbon deposition process were summarized. Based on understanding of the reaction mechanism, an anti-coking strategy keeping a balance between C–C bond scission and oxidation of hydrocarbon species was proposed. Two aspects of this strategy, including (i) enhanced C–C bond scission capability of metal, (ii) promoting effects of support for protecting the activity of metal particles and removing surface carbon, were particularly described. The revelation between the intermediate reaction and modification strategy enables the successful design of new and stable catalysts for improving anti-coking ability. This review not only shed light to the development of high-performance industrial ESR catalysts, but also contribute an innovative perspective to understand anti-coking mechanism for steam reforming of CH3CHO, CH3COOH, CH3COCH3, and even crude bio-oil.  相似文献   

18.
Ethanol steam reforming (ESR) is a technology of great promise for hydrogen production but designing highly efficient, green and inexpensive Ni-based catalysts for inhibiting metal sinter and carbon deposition and increasing catalyst activity and stability is still a key challenge. In this paper, the M-Ni/Sepiolite catalysts (M-Ni/SEP, M = La, Mg or Ca) were synthesized using a hydrothermal-assisted impregnation method. The results from characterizations such as N2 adsorption-desorption, XRD, H2-TPR, XPS, HRTEM and NH3/CO2-TPD showed that La, Mg and Ca promoters can facilitate the dispersion and exposure of Ni0 active sites, enhance the metal-support interaction and modify surface acid/alkaline sites. Furthermore, the results of catalyst activity tests in ESR demonstrated that the Ca–Ni/SEP catalyst exhibited the highest carbon conversion of 95% and hydrogen yield of 65%, attributed to the small mean Ni particle size, strong metal-support interaction, abundant surface Ni0 active sites and modified surface alkaline/acid sites. According to the carbon deposition analyses, it was observed in Ca–Ni/SEP that the carbon deposition amount was evidently decreased, and the graphitic degree of coke was increased due to the increased metal site amount.  相似文献   

19.
Hydrogen is contemplated as an alternative clean fuel for the future. Ethanol steam reforming (ESR) is a carbon-neutral, sustainable, green hydrogen production method. Low cost Ni/Al2O3 and Ni/CeO2 powder catalysts demonstrate high ESR activity. However, acidic nature of Al2O3 and instability of CeO2 lead to deactivation of the catalysts easily. This article examines the research articles published on the modification of Ni by various noble and non-noble metals and on alteration of the supports by different metal oxides in detail and their effect on ESR all through 2000–2021. The ESR reaction mechanisms on Ni/Al2O3 and Ni/CeO2 powder catalysts and basic thermodynamics for different possible reactions and H2 yield are explored. Manipulation of catalyst morphology (surface area and particle size) via preparation method, selection of active metal promoter and support modifier are found to be significantly important for H2 production and minimizing carbon deposition on catalysts.  相似文献   

20.
Decline in catalyst performance due to coke deposition is the main problem in diesel steam (SR) and autothermal reforming (ATR) reactions. Good redox potential and strong interaction of CeO2 with nickel increase activity and coke resistivity of Ni/Al2O3 catalysts. In this study, mesoporous Al2O3, CeO2/Al2O3, and CeO2/ZrO2/Al2O3 supported nickel catalysts were successfully synthesized. The highest hydrogen yield, 97.7%, and almost no coke deposition were observed with CeO2/ZrO2/Al2O3 catalyst (Ni@8CeO2-2ZrO2-Al2O3-EISA) in SR reaction. The second highest hydrogen yield, 91.4%, was obtained with CeO2/Al2O3 catalyst (Ni@10CeO2-Al2O3-EISA) with 0.3 wt% coke deposition. Presence of ZrO2 prevented the transformation of cubic CeO2 into CeAlO3, which enhanced water gas shift reaction (WGSR) activity. Ni@10CeO2-Al2O3-EISA did not show any decline in activity in a long-term performance test. Higher CeO2 incorporation (20 wt%) caused lower steam reforming activity. Change of synthesis route from one-pot to impregnation for the CeO2 incorporation decreased the number of acid sites, limiting cracking reactions and causing a significant drop in hydrogen production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号