首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnO/Cu2S nanotube arrays are fabricated firstly by a facile and capping-agent-free method, and the photo-electrochemical performance has been studied systematically. The results show that ZnO/Cu2S nanotube arrays achieve enhanced photo-electrochemical water splitting performance and the photocurrent densities of ZnO/Cu2S are 7.9 times than that of ZnO at 0 V versus Ag/AgCl. The performance of the ZnO/Cu2S nanotube arrays can be adjusted by changing the amount of Cu2S microcrystals. The results confirm that the enhanced photo-electrochemical performance of ZnO/Cu2S is due to the significantly improved visible light absorption, effective separation of photo-induced carriers due to the well band energy match and the formed p-n junction between ZnO and Cu2S.  相似文献   

2.
Herein, a flame-assisted pyrolysis technique is developed for one-step in-situ construction of Cu2O/Cu/TiO2 nanotube arrays. The structure and morphology of the obtained samples are systematically characterized. Interestingly, UV–vis absorption spectroscopy reveals that the introduction of Cu2O and Cu considerably enhance light response of TiO2 nanotube arrays in the visible region. Moreover, the composited electrode shows enhanced photo-electrochemical activity. Compared with blank TiO2 nanotube arrays, not only the photocurrent and photo-voltage of composited electrodes are improved but also the stability is also enhanced. And, the maximum photo-conversion efficiency for composited electrode presents 4.71 folds larger than that of blank TiO2 electrode. This enhancement is due to the faster charge separation/transportation ability of Cu and visible light response of Cu2O. This research develops a novel and facile method for the in-situ fabrication of Cu2O/Cu/TiO2 nanotube arrays and demonstrates their improved utilization of solar energy.  相似文献   

3.
Cu2O/Cu/TiO2 nanotube heterojunction arrays were prepared by assembling Cu@Cu2O core-shell nanoparticles on TiO2 nanotube arrays (NTAs) using a facile impregnation-reduction method. SEM and TEM results show that Cu@Cu2O plate-like nanoparticles with tens of nanometers in size are confined inside TiO2 NTAs. Only the outmost several nanometers of the nanoparticles are Cu2O and the predominant inner of the nanoparticles are Cu metals. Cu L3VV Auger spectra of Cu2O/Cu/TiO2 NTAs suggest that Cu metals are enveloped by at least several nanometers Cu2O on the surface, which further confirms the Cu@Cu2O core shell structure of Cu nanoparticles. The ability of light absorption of Cu2O/Cu/TiO2 NTAs is enhanced. The range of absorption wavelengths changes from 400 to 700 nm due to the surface plasmon response of Cu metals core and Cu2O nanoparticles shell. The photocatalytic hydrogen production rate of Cu2O/Cu/TiO2 heterojunction arrays is enhanced when compared with those of Cu2O/TiO2 NTAs and TiO2 NTAs under UV light. Moreover, a stable H2 generation property was obtained under visible light (λ gt; 400 nm). The Cu metal core is believed to play a key role in the enhancement of photocatalytic properties of Cu2O/Cu/TiO2 nanotube heterojunction arrays.  相似文献   

4.
Thin film deposition of Cu2O and application for solar cells   总被引:1,自引:0,他引:1  
Deposition conditions of cuprous oxide (Cu2O) thin films on glass substrates and nitrogen doping into Cu2O were studied by using reactive radio-frequency magnetron sputtering method. The effects of defect passivation by crown-ether cyanide treatment, which simply involves immersion in KCN solutions containing 18-crown-6 followed by rinse, were also studied. By the crown-ether cyanide treatment, the luminescence intensity due to the near-band-edge emission of Cu2O at around 680 nm was enhanced, and the hole density was increased from 1016 to 1017 cm−3. Finally, polycrystalline p-Cu2O/n-ZnO heterojunctions were grown for use in solar cells. Two deposition sequences were studied, ZnO deposited on Cu2O and Cu2O deposited on ZnO. It was found that the crystallographic orientation and current–voltage characteristics of the heterojunction were significantly influenced by the deposition sequence, both being far superior for the heterojunction with structure Cu2O on ZnO than for the inverse structure. We successfully obtained a photoresponse for the first time in the deposited thin film of Cu2O/ZnO.  相似文献   

5.
The heterojunction of ZnO was deposited on hydrogenated TiO2 nanotube arrays (H–TiO2) by atomic layer deposition (ALD) with various cycles. The ZnO was uniformly wrapped with the H–TiO2 samples and the thickness could be accurately controlled by the cycle numbers of ALD. The higher growth rate ~2.7 Å/cycle was obtained due to the surface amorphous layer, compared with the air-treated samples (A-TiO2), ~2.3 Å/cycle. When the cycle numbers increased to 200, nanowire arrays appeared. Interestingly, the absorption in the visible light region improved more significantly when ALD ZnO was employed for the H–TiO2 rather than the A-TiO2 samples. The H–TiO2 samples with 42 nm of ALD ZnO exhibited enhanced photoelectrochemical water splitting performances, compared with the A-TiO2 with 42 nm of ALD ZnO. This was related to the higher degree of the electronic band bending and improved photo-response in the UV and visible light region, resulting from the oxygen vacancies.  相似文献   

6.
The influence of the electrodeposition potential on the morphology of Cu2O/TiO2 nanotube arrays (Cu2O/TNA) and their visible-light-driven photocatalytic activity for hydrogen evolution have been investigated for the first time in this work. The photocatalytic hydrogen evolution rate of the as-prepared Cu2O/TNA at the deposition potential of −0.8 V was about 42.4 times that of the pure TNA under visible light irradiation. This work demonstrated a feasible and simple electrodeposition method to fabricate an effective and recyclable visible-light-driven photocatalyst for hydrogen evolution.  相似文献   

7.
To develop an efficient photocatalyst electrode for solar energy harvesting and photocatalysis application in the visible region, broadband plasmonic Cu film combined with Cu2O/TiO2 nanotube arrays heterojunction (Cu film/Cu2O/TiNT) has been successfully fabricated by anodization combined with electrodeposition method. Interestingly, linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and UV–Vis diffuse reflectance spectroscopy reveal that the combined consequence of both Cu film and Cu2O in the as-synthesized ternary composite considerably enhances light absorption in the visible spectral. This activity is attributed to the more efficient charge separation/transportation and the presence of Cu film with strong plasmon resonance (SPR) effect. Moreover, the combined effects of both Cu film and Cu2O on TiNT approved highest catalytic current density and highest photocatalytic activity on methylene blue (MB). The efficiency and the rate of MB photodegradation over the Cu film/Cu2O/TiNT were found to be triple compared to TiNT. Within only 30 min of reaction time, the photodegradation of MB reaches nearly 100%.  相似文献   

8.
In this study, we have developed a facile chemical bath deposition (CBD) method to grow p-type Cu2O nanoparticles on n-type TiO2 nanowire arrays (TiO2 NWAs) to fabricate TiO2/Cu2O core/shell heterojunction nanowire arrays (TiO2/Cu2O core/shell NWAs). When used as photoelectrode, the fabricated TiO2/Cu2O core/shell NWAs show improved photoelectrochemical (PEC) water splitting activity to pure TiO2 NWAs. The effects of the CBD cycle times on the PEC activities have been studied. The TiO2/Cu2O core/shell heterojunction nanowire array photoelectrode prepared by cycling 5 times in the CBD process achieves the highest photocurrent of 2.5 mA cm?2, which is 2.5 times higher than that of pure TiO2 NWAs. In addition, the H2 generation rate of this photoelectrode reaches to 32 μmol h?1 cm?2, 1.7 times higher than that of pure TiO2 NWAs. Furthermore, the TiO2/Cu2O core/shell heterojunction nanowire array photoelectrode shows excellent photostability and achieves a stable photocurrent of over 2.3 mA cm?2 during long light illumination time of 5 h. The enhanced photocatalytic activity of TiO2/Cu2O core/shell heterojunction nanowire array photoelectrode is attributed to the synergistic actions of TiO2 and Cu2O for improving visible light harvesting, and efficient transfer and separation of photogenerated electrons and holes.  相似文献   

9.
Combination of ZnO and Cu2O semiconductors is remarkable for efficient photovoltaic cells and enhanced photoelectrochemical (PEC) performance due to the high electronic energy band alignment of these materials and their controllable electronic structure at the interface. This study reports on a systematic analysis of the effects of Cu2O nanocube doping on the structural properties and PEC performance of ZnO films. ZnO samples doped with Cu2O were prepared by a practical electrochemical method. Characterization of the materials was performed by XRD, Raman, FTIR spectroscopy and electrochemical techniques. The XRD, Raman, FTIR spectroscopy analyses indicated a single phase of ZnO for the lower Cu2O deposition time, while a secondary phase of Cu2O evolved for the 5 min deposition time. This study showed that ZnO doped with Cu2O grown for 3 min had the best PEC performance. ZnO/Cu2O photoelectrodes are recommended as an attractive, competitive and alternative candidate for advanced PEC sensing and this may be for the extended field of water splitting into oxygen and hydrogen under sunlight.  相似文献   

10.
Recently, cuprous oxide (Cu2O) based photocathodes have gained research attention for hydrogen (H2) production through photoelectrochemical (PEC) water splitting reactions due to marginally lower synthesis cost and low energy intensity fabrication processes. Unique properties of Cu2O, such as tunable bandgap, appropriate band edge potentials with water redox levels and non-toxic nature makes it beneficial for PEC applications. Cuprite is mainly studied under visible light to facilitate enhanced H2 gas production upon illumination. However, notoriously photocorrosion degrades the PEC performance and restricts the photoactivity of Cu2O. Moreover, because of the redox potentials lies within the band gap of Cu2O; self-photocorrosion or self-oxidation upon illumination is unavoidable. Improvement in the Cu2O photocathodes was achieved by finding elegant solutions such as forming thin heterojunction layers by atomic layer deposition (ALD) as well other methods, co-catalyst deposition, tuning crystal facets and surface modifications with different synthetic methods. In this review, we discuss the improvements in Cu2O photocathodes achieved over the years for enhanced H2 production with recently studied photocathodes.  相似文献   

11.
To improve the visible light utilization and photogenerated carriers separation, carbon self-doped carbon nitride (C-CN) supported TiO2 photocatalysts were synthesized via a designed two-step strategy. After carbon self-doping, the colloid TiO2 were in-situ deposited on C-CN surface and crystalized by calcination. Simultaneously, the bulk C-CN structure was thermally exfoliated to nanosheet morphology. This strategy ensured the saturated deposition of colloid TiO2 nanoparticles on C-CN nanosheets to form well-constructed heterostructure with sufficient interfacial contact. The as-prepared TiO2/C-CN (TCN) heterojunction photocatalysts showed enhanced visible light absorption capability, resulting in impressively high hydrogen production efficiency as 212.7 μmol h−1, which was 10.8 times higher than that of CN. The remarkably enhanced photocatalytic performance may be mainly ascribed to synergetic effect of carbon self-doping and TiO2 deposition on the improved visible light utilization and photogenerated carriers separation. The probable mechanism in such well-constructed heterojunction photocatalysts was proposed based on the structural analysis, electrical and photoelectrical properties, and photocatalytic process. The proposed strategy may be extended to the preparation of diverse heterojunction photocatalysts with excellent performance for solar energy conversion.  相似文献   

12.
In this work, we report the synthesis of cuprous oxide (Cu2O) nanoparticles modified vertically oriented aligned titanium dioxide (TiO2) nanotube arrays through wet chemical treatment of TiO2 nanotubes and their multi-functional application as enhanced photo electrochemical and hydrogen generation. The synthesized samples were characterized by X-ray diffraction, SEM, TEM, and UV–Vis spectroscopy. The structural characterization revealed that the admixed Cu2O nanoparticles on the TiO2 surface did not alter its crystalline structure of vertically oriented aligned TiO2 nanotube. The photocatalytic performance and hydrogen generation of as synthesized Cu2O nanoparticles modified aligned TiO2 nanotube was found to highly depend on the Cu2O content. The optical characterizations reveal that the presence of Cu2O nanoparticles extends its absorption into the visible region which improves the photocurrent density in comparison to pristine aligned TiO2 nanotubes electrodes due to enhanced photoactivity and better charge separation. The optimum photocurrent density and hydrogen generation rate has been found to be 3.4 mA cm?2 and 127.5 μmole cm?2 h?1 in 1 M Na2SO4 electrolyte solution under 1.5 AM solar irradiance of white light with illumination intensity of 100 mW cm?2.  相似文献   

13.
Highly ordered and vertically oriented TiO2 nanotube arrays with a length of 250 nm and a diameter of 70 nm were prepared by atomic layer deposition (ALD) coupled with anodic aluminum oxide (AAO) template. An ordered heterojunction (OHJ) polymer/inorganic hybrid solar cell was fabricated by successful infiltration of P3HT into the nanotube arrays. Structural features of the nanotube arrays enabling the interdigitated structure of the OHJ were discussed and the performance of the solar cell was characterized to be the power conversion efficiency of 0.50%.  相似文献   

14.
In present work, we report a facile fabrication process to improve the photoelectrochemical (PEC) performance of ZnO-based photoelectrodes. In order to achieve that, the Cu2O nanocubes are cathodic-deposited on the as-prepared ZnO nanorods. Then rGO nanosheets are electrodeposited on the ZnO/Cu2O heterostructures. The fabricated photoelectrodes are systematically studied in detail by different characterization techniques such as powder X-ray diffraction, micro-Raman, X-ray photoelectron spectroscopy, ultraviolet diffused reflectance spectroscopy and photoluminescence spectroscopy analysis. Morphologies of the fabricated photoelectrodes are investigated through electron microscopy in scanning and transmission mode. To evaluate the PEC performance of the fabricated photoelectrodes, the line scan voltammetry (LSV) measurement is performed using a three-electrode system in 0.5-M Na2SO4 electrolyte solution under stimulated light illumination at 100 mW/cm2 from a 300-W Xenon Arc lamp coupled with an AM 1.5G filter using a three-electrode system. The photocurrent measurement demonstrates that the photoelectrodes based on ZnO/Cu2O/rGO possess enhanced PEC performance compared to the pristine ZnO and ZnO/Cu2O photoelectrodes. The photocurrent density of ZnO/Cu2O/rGO-15 photoelectrode (10.11 mA/cm2) is ∼9 and ∼3 times higher than the photoelectrodes based on pristine ZnO (1.06 mA/cm2) and ZnO/Cu2O (3.22 mA/cm2). The enhanced PEC performance of ZnO/Cu2O/rGO photoelectrode is attributed to the excellent light absorption properties of Cu2O and excellent catalytic and charge transport properties of rGO. Experimental results reveal that the proposed functional nanomaterials have a great potential in water splitting applications.  相似文献   

15.
Here, we report a significant enhancement in photo-electrochemical activity of co-doped/modified TiO2 nanotube arrays (TNAs). First, TiO2 nanostructures were sensitized with nitrogen and carbon via a single step/low cost anodization process and then modified with Nis/CdS/ZnS nano particles (NPs) by the successive ionic layer adsorption and reaction (SILAR) method at room temperature. Photo-electrochemical properties and physical/chemical characteristics of the pure and sensitized/modified TNAs were investigated using field emission scanning electron microscopy (FESEM), XRD, XPS and EDX, comprehensively. Electrochemical measurements and UV–Vis DRS spectroscopy of the photo-electrodes showed that co-doping with anions and modification with different NPs result in the broadening of the absorption region of visible light and the reduction of band gap energy. The mechanism responsible for the enhanced photo-electrochemical activity of the C, N-co-doped/NiS, CdS, ZnS NPs modified TNAs for the water reduction reaction using aqueous solutions of Na2S/Na2SO3 as sacrificial electrolyte under the whole spectrum of simulated solar light irradiation has been presented. The highest photocurrent in presence of sacrificial agent (Na2S/Na2SO3) was obtained as 18.79 mA/cm2, for the optimized SILAR loading cycles and dopants concentration. Furthermore, a high incident photon to current efficiency (IPCE) of about 82% for the optimum photo-anode had been achieved. These results confirm that the C, N-co-doped/NiS, CdS, ZnS NPs modified TNAs nanocomposite may offer a promising strategy to attain maximum efficiency in a variety of solar energy conversion systems, along with reduced photo-corrosion in the semiconductor-semiconductor heterojunction.  相似文献   

16.
Solar-driven water splitting of semiconductor photoelectrodes via photoelectrochemical (PEC) cell has been regarded as the most promising approach to mitigate the energy crisis and environmental issues in the future. In this work, CuS nanoparticles (NPs) are deposited on ZnO nanotube arrays (ZnO/CuS NTAs) via successive ion layer absorption and reaction method for PEC water splitting under visible light irradiation without applying bias. The excellent light harvesting capacity of CuS NPs from visible to near infrared region not only expands the light harvesting of ZnO NTAs into near infrared region, but also substantially boosts light absorption ranging from 300 to 800 nm. Moreover, CuS NPs coupled on ZnO NTAs can establish a type-II band alignment between ZnO and CuS. Consequently, the ZnO/CuS NTAs photoanode exhibits the significantly boosted PEC water splitting performance under visible light illumination (λ > 420 nm) without applying bias. The photocurrent density of the ZnO/CuS NTAs photoanode is 21.2 μA/cm2, which is increased by 9 times compared to that of the pure ZnO NTAs photoanode. The enhancement in PEC water splitting performance for ZnO/CuS NTAs is attributed to (i) the cooperative actions of ZnO and CuS; (ii) significant enhancement in light absorption from the visible to near infrared region achieved by CuS NPs and (iii) efficient charge carrier separation achieved by type-II band alignment.  相似文献   

17.
A CuOx/WO3 thin-film based on p-n heterojunction proposed as a highly performance and stable photocathode. The CuOx/WO3 thin-film was deposited by magnetron reactive sputtering layer by layer, followed with slow rate annealing in O2 ambient. This is an excellent method for high-quality and uniform composite thin-film deposition with large areas at a high growth rate. The optimized CuOx/WO3 thin-film photocathode after slow rate annealing at 500 °C in O2 provides an obviously enhanced photoinduced current density of −3.8 mA cm−2 at a bias potential of −0.5 V (vs. Ag/AgCl), which value is 1.5 times higher than that of bared CuOx thin-film. This highly enhanced photoelectrochemical performance is attributed to p-n heterojunction, which accelerates the photogenerated electrons and holes transfer to n-WO3 and p-CuOx, thereby accelerate the separation of photogenerated carries. In addition, WO3 layer covered on the surface of CuOx thin film can improve the stability of Cu2O in electrolytes.  相似文献   

18.
The pulsed laser deposition (PLD) technique has been used to decorate TiO2 nanotubes (NTs) with cobalt-nickel (CoNi) nanoparticles (NPs). The TiO2 NTs were produced beforehand through the controlled anodic oxidation of titanium substrates. The effect of the nature of the PLD background gas (Vacuum, O2 and He) on the microstructure, composition and chemical bondings of the CoNi-NPs deposited onto the TiO2-NTs has been investigated. We found that the PLD CoNi-NPs have a core/shell (oxide/metal) structure when deposited under vacuum, while they are fully oxidized when deposited under O2. On the other hand, by varying the CoNi-NPs loading of the TiO2-NTs (through the increase of the number of laser ablation pulses (NLP)), we have systematically studied their photocatalytic effect by means of cyclic-voltammetry (CV) measurements under both AM1.5 simulated solar light and filtered visible light. We show that depositing CoNi-NPs on the substrate under vacuum and He increases the photo-electrochemical conversion effectiveness (PCE) by 600% (at NLP = 10,000) in the visible light domain, while their overall PCE degrades with NLP under solar illumination. In contrast, the fully oxidized CoNi-NPs (deposited under O2) are found to be the most effective catalyst under sunlight with an overall increase of more than 50% of the PCE at the optimum loading around NLP ~1000. Such catalytic enhancement is believed to result from both an enhanced light absorption by CoO (of which bandgap is of ~2.4 eV) and the formation of a heterojunction between NiO/CoO nanoparticles and TiO2 nanotubes.  相似文献   

19.
Nano-structured Cu2O solar cells fabricated on sparse ZnO nanorods   总被引:1,自引:0,他引:1  
Nano-structured Cu2O/ZnO nanorod (NR) heterojunction solar cells fabricated on indium tin oxide (ITO)-coated glass are studied. Substrate film and NR density have a strong influence on the preferred growth of the Cu2O film. The X-ray diffractometer (XRD) analysis results show that highly (2 0 0)-preferred Cu2O film was formed when plating on plain ITO substrate. However, a highly (1 1 1)-preferred Cu2O film was obtained when plating on sparse ZnO NRs. SEM, TEM and XRD studies on sparse NR samples indicate that the Cu2O nano-crystallites mostly initiate its nucleation on the peripheral surfaces of the ZnO NRs, and are also highly (1 1 1)-oriented. Solar cells with ZnO NRs yielded much higher efficiency than those without. In addition, ZnO NRs plated on a ZnO-coated ITO glass significantly improve the shunt resistance and open-circuit voltage (Voc) of the devices, with consistently much higher efficiency obtained than when ZnO NRs are directly plated on ITO film. However, longer NRs do not improve the efficiency due to low short-circuit current (Jsc) and slightly higher series resistance. The best conversion efficiency of 0.56% was obtained from a Cu2O/ZnO NRs heterojunction solar cell fabricated on a 80 nm ZnO-coated ITO glass with Voc=0.514 V, Jsc=2.64 mA/cm2 and 41.5% fill factor.  相似文献   

20.
Photoelectrocatalytic hydrolysis of ammonia borane (AB) is a promising technique for producing hydrogen gas (H2) in the presence of an appropriate photocatalyst under light irradiation and bias. The application of cuprous oxide on titanium dioxide nanotube arrays (Cu2O/TNA) for the photoelectrocatalytic hydrolysis of AB was studied. Cu2O/TNA exhibited a spectral response in the ultraviolet–visible region and an onset wavelength of 600 nm. With AB in an electrolyte, Cu2O/TNA exhibited a significant increase in its photocurrent spectral response at a bias of 0.1 V versus Ag/AgCl. The H2 generation rate by photoelectrocatalysis (under 5-mW cm?2 irradiation at 455 nm; bias of 0.1 V vs. Ag/AgCl) was 0.018 μmol s?1 cm?2, which was twice that by photocatalysis and four times those by catalysis and electrocatalysis; a Faradaic efficiency of 77% (corresponding to the oxidation reaction of AB) was also observed. Hence, Cu2O/TNA is an efficient photoanode for photoelectrocatalytic hydrolysis of AB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号