首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to improve the alkali stability and OH conductivity of Poly (styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS)-based anion exchange membranes (AEMs), double cations with different alkyl intervals are remotely grafted onto the SEBS skeleton with hexyl as a linker through reactions such as acylation and ketone reduction. Then, SEBS-0.8Cn-0.2C6 cross-linked membranes were prepared to study the effect of the length of the alkyl chain between the dications on the ion transport and other properties. The OH conductivity of SEBS-0.8C4-0.2C6 cross-linked membrane can reach 85.27 mS cm−1 at 80 °C, and the peak power density can reach 225 mW cm−2 at a current density of 450 mA cm−2. As the dicationic spacer alkyl chains became longer, the swelling rate and water uptake of the membranes increased, resulting in significant improvements in mechanical properties and chemical stability. After soaking in 2 M NaOH solution at 80 °C for 1200 h, the conductivity of SEBS-0.8C6-0.2C6 decreased by only 5.76%. Optimizing the side chain structure of SEBS skeleton can effectively improve the comprehensive performance of AEM.  相似文献   

2.
By choosing a triple block polymer, poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS), as the backbone and adopting a long side-chain double-cation crosslinking strategy, a series of SEBS-based anion-exchange membranes (AEMs) was successively synthesized by chloromethylation, quaternization, crosslinking, solution casting, and alkalization. The 70C16-SEBS-TMHDA membrane showed high OH conductivity (72.13 mS/cm at 80 °C) and excellent alkali stability (only 10.86% degradation in OH conductivity after soaking in 4-M NaOH for 1700 h at 80 °C). Furthermore, the SR was only 9.3% at 80 °C and the peak power density of the H2/O2 single cell was up to 189 mW/cm2 at a current density of 350 mA/cm2 at 80 °C. By introducing long flexible side chains into a polymer SEBS backbone, the structure of the hydrophilic–hydrophobic microphase separation in the membrane was constructed to improve the ionic conductivity. Additionally, network crosslinked structure improved dimensional stability and mechanical properties.  相似文献   

3.
Recently, the preparation of hydroxide exchange membranes (HEMs) without ether bonds have attracted much attention because of their high chemical stability. Hence, ether-bond free, highly durable, and conductive poly(arylene piperidine)s (PAPips) tethered with heterocyclic ammonium via hexyl spacer chains were prepared successfully for HEMs via a facile synthetic procedure. The effect of the cationic groups (quaternary ammonium, piperidinium, and morpholinium) on the properties of the corresponding PAPip-based HEMs, including the morphology, hydroxide conductivity, and alkaline and chemical stability were systematically investigated. The as-designed PAPip-based membranes exhibited excellent overall performance. The membranes attached with piperidinium (IEC = 1.64 mmol g−1) exhibited a hydroxide conductivity of 0.082 S cm−1 at 80 °C and exhibited significant alkaline stability which maintained 80.1% of its conductivity after immersion in 1 M NaOH at 80 °C for 1500 h. The as-prepared membrane also presented a peak power density of 76 mW cm−2 at 80 °C in a H2/O2 HEMFC. The resulting HEMs also showed excellent mechanical properties, thermal stability, and well-defined phase separation.  相似文献   

4.
Cross-linked quaternised Poly(2,6-dimethyl-1,4-Phenylene Oxide) (QPPO)-based membranes were prepared via Friedel-Crafts reactions using SnCl4 catalyst, 1,3,5-trioxane and chlorotrimethylsilane as environmentally-friendly chloromethylating reagents. New equations to calculate the degree of chloromethylation (DC) and cross-linking degree (CLD) were proposed. Ionic conductivity of 133 mS cm−1 at 80 °C was obtained, one of the highest reported for QPPO based membranes. We have compared QPPO to chloromethylated polystyrene-b-poly(ethylene/butylene)-b-polystyrene (SEBS) ionomer and report on the importance of ionomer-membrane interaction as well as the trade-off between swelling ratio and conductivity on performance and mechanical stability of AEM water electrolyser. Exsitu stability testing after 500 h in 1 M KOH showed membranes retained up to 94% of their original IEC. QPPO was employed as both membranes and ionomers in electrolyser tests. QPPO membranes exhibited area specific resistance of 104 mΩ cm−2 and electrolyser current density of 814 mA cm−2 at 2.0 V in 0.1 M NaOH solution at 40 °C.  相似文献   

5.
SEBS (styrene-b-(ethylene-co-butylene)-b-styrene)) is a non-aryl-ether-type tri-block copolymer widely used as an anion exchange membrane (AEM) material due to its excellent alkaline stability and phase separation properties. However, low tensile strength due to the aliphatic chains and the poor physical properties of the SEBS-based membranes limit their practical application for AEM water electrolysis (AEMWE) or AEM fuel cell (AEMFC). In this study, three types of crosslinked AEMs were prepared using bromohexyl pentafluorobenzyl SEBS as a polymer backbone, and three different crosslinkers, dimethyl amine (DMA), tetramethyl diaminohexane (TMHA), and tris(dimethyl aminomethyl) phenol (TDMAP). Once introduced, these crosslinking agents were converted into the corresponding conducting head groups. The thermal, chemical, physical, and electrical properties of the obtained crosslinked membranes were then investigated for use in AEMWE. In particular, the TDMAP-50x-SEBS membrane with 50% degree of crosslinking experienced hydrogen bonding with water and OH due to the presence of OH groups in the structure of the crosslinking agent (TDMAP). Because of this, the membrane showed an improved morphology and high conductivity (20 °C: 31.8 mS cm−1, 80 °C: 109.9 mS cm−1). In addition, TDMAP induced physical crosslinking by hydrogen bonding between molecules so that the corresponding membrane (TDMAP-50x-SEBS) exhibited high alkaline and oxidative stability and good mechanical properties. This SEBS-based membrane has a tensile strength of 18.0 MPa and Young's modulus of 165.14 MPa. The WE single-cell test (1 M KOH solution at 70 °C) using TDMAP-50x-SEBS also showed a cell performance of 1190 mA cm−2 at 2.0 V. This is 126% higher than the cell performance measured for FAA-3-50, a commercialized AEM material, under the same conditions.  相似文献   

6.
New hybrid proton conducting membranes based on sulfonated copolymers of styrene and allyl glycidyl ether using tetraethyl orthosilicate were syntheses. The composition and structure of the copolymers and membranes has been proven by elemental analysis, IR and NMR spectroscopy. Based on quantum chemical calculations a sulfonation mechanism of copolymers was proposed. The characteristics of membranes were evaluated by thermal analysis, dynamic mechanical analysis, electrochemical impedance spectroscopy, water uptake, swelling and ion exchange capacity tests. The hybrid membranes are characterized by high proton conductivity of 4.21 10−2 S cm−1 (70 °C, 75% RH), activation energy of proton transport (24.5 kJ mol−1), ion-exchange capacity (2.1 mmol g−1), and thermal stability up to 260°С. The hybrid membranes showed water uptake of 6 and 51% at 30 °C and 100 °C, respectively. The suitability of the hybrid membranes toward fuel cell applications was tested through a single cell analysis.  相似文献   

7.
A series of modified anion conductive block poly(arylene ether sulfone) copolymer membranes containing a selective substituted unit, 15%, 20% and 25% 4,4′-(2,2-diphenylethenylidene) diphenol, were prepared for use in alkaline fuel cells. The anion exchange membranes were synthesized by first introducing chloromethyl groups. Quaternary ammonium groups could then be added to the tetra-phenyl ethylene units, followed by subsequent ion exchange. The tetra quaternary ammonium hydroxide polymers showed high molecular weights and exhibited high solubility in polar aprotic solvents. The block copolymer membrane showed higher ionic conductivity (21.37 mS cm−1) than the random polymer membrane of similar composition (17.91 mS cm−1). The membranes showed good chemical stability in 1.0 M KOH solution at 60 °C. They were characterized by 1H NMR, FT-IR, TGA and measurements of ion exchange capacity, water uptake and ionic conductivity.  相似文献   

8.
Low-cost biopolymer chitosan has received considerable attention in the field of anion exchange membranes (AEMs) because it can be easily quaternized and avoids the carcinogenic chloromethylation step. Simultaneously increasing the ionic conductivity and improving mechanical properties of quaternized chitosan (QCS) is key for its high-performance application. In this study, new composite AEMs consisting of QCS and functionalized carbon nanotubes (CNTs) were prepared. CNTs were coated with a thick silica layer onto which high-density quaternary ammonium groups were then grafted. The insulator silica coating effectively prohibits electron conduction among nanotubes and the grafted –NR3+ provides new OH conductive sites. Incorporating 5 wt% functionalized CNTs into the matrix enhanced ionic conductivity to 42.7 mS cm−1 (80 °C) which was approximately 2 times higher than that of pure QCS. The effective dispersion of CNTs and appropriate interfacial bonding between nanofiller and QCS improved the mechanical properties of AEMs, including both the strength and toughness of the composite membranes. An alkaline direct methanol fuel cell equipped with the composite membrane (5% functionalized CNTs loading) produced an maximum power density of 80.8 mW cm−2 (60 °C), which was 57% higher than that of pure QCS (51.5 mW cm−2). This study broadens the application of natural polymers and provides a new way to design and fabricate composite AEMs with both improved mechanical properties and electrochemical performance.  相似文献   

9.
Proton-conductive polymer membranes are used as an electrolyte in the so-called proton exchange membrane fuel cells. Current commercially available membranes are perfluorosulfonic acid polymers, a class of high-cost ionomers. This paper examines the potential of polymer blends, namely those of styrene–(ethylene-butylene)–styrene block copolymer (SEBS) and polyvinylidene fluoride (PVDF), in the proton exchange membrane application. SEBS/PVDF blends were prepared by twin-screw extrusion and the membranes were formed by calendering. SEBS is a phase-segregated material where the polystyrene blocks can be selectively functionalized offering high ionic conductivity, while PVDF insures good dimensional stability and chemical resistance to the films. Proton conductivity of the films was obtained by solid-state grafting of sulfonic acid moieties. The obtained membranes were characterized in terms of conductivity, ionic exchange capacity and water uptake. In addition, the membranes were characterized in terms of morphology, microstructure and thermo-mechanical properties to establish the blends morphology–property relationships. Modification of interfacial properties between SEBS and PVDF was found to be a key to optimize the blends performance. Addition of a methyl methacrylate–butyl acrylate–methyl methacrylate block copolymer (MMA–BA–MMA) was found to compatibilize the blend by reducing the segregation scale and improving the blend homogeneity. Mechanical resistance of the membranes was also improved through the addition of this compatibilizer. As little as 2 wt.% compatibilizer was sufficient for complete interfacial coverage and lead to improved mechanical properties. Compatibilized blend membranes also showed higher conductivities, 1.9 × 10−2 to 5.5 × 10−3 S cm−1, and improved water management.  相似文献   

10.
Alkaline anion exchange membrane fuel cell has fast cathode reactions and thus allows the use of low cost electrocatalysts. However, its practical application is hindered by the low hydroxide ion conductivity and alkaline stability of AEM. In this study, pendent piperidinium functionalized polyetheretherketone is synthesized and blended with polybenzimidazole for fabrication of composite anion exchange membrane. The pendent piperidinium functionalized side chains can create well-connected ionic transporting channels and thus impart the blend membranes high hydroxide conductivity (61.5–72.8 mS cm−1 at 80 °C) and good tensile strength (42.8–58.9 MPa). Due to the strong interactions between polybenzimidazole and piperidinium groups of the polymers as confirmed by Fourier transform infrared spectroscopy, the piperidinium functionalized blend anion exchange membrane can retain 95% of its original OH conductivity value when treated in 1 M KOH at 60 °C for 576 h. The single fuel cell assembled with the membrane can yield a peak power density of 87 mW cm−2 at 80 °C. Our work provides a new and effective method to balance the hydroxide conductivity and alkaline stability of anion exchange membranes.  相似文献   

11.
Herein, poly (phenylene) oxide (PPO)-based cross-linked anion exchange membranes (AEMs) with flexible, long-chain, bis-imidazolium cation cross-linkers are designed and synthesized. Although the cross-linked membranes possess high ion exchange capacity (IEC) values of up to 3.51–3.94 meq g−1, they have a low swelling degree and good mechanical strength because of their cross-linked structure. Though the membranes with the longest flexible bis-imidazolium cation cross-linker (BMImH-PPO) possess the lowest IEC among these PPO-based AEMs, they show the highest conductivity (24.10 mS cm−1 at 20 °C) and highest power density (325.7 mW cm−2 at 60 °C) because of the wide hydrophilic/hydrophobic microphase separation in the membranes that promote the construction of ion transport channels, as confirmed by atom force microscope (AFM) images and the small angle X-ray scattering (SAXS) analyses. Furthermore, the BMImH-PPO samples exhibit good chemical stability (10% and 6% decrease in IEC and conductivity, respectively, in 2 M KOH at 80 °C for 480 h, and a 22% decrease in weight in Fenton's reagent at 60 °C for 120 h), making such cross-linked AEMs potentially applicable in alkaline anion exchange membrane fuel cells.  相似文献   

12.
To develop anion exchange membranes with excellent chemical stability and high performance. A series of quaternary ammonium functionalized (hydrophilic) hydrophobic rigid poly (carbazole-butanedione) (HOCB-TMA-x) anion exchange membranes were prepared, where x represents the percentage content of hydrophobic unit octylcarbazole (OCB). Due to the introduction of hydrophobic rigid unit octylcarbazole and hexyl flexible side chain, the hydrophilic-hydrophobic microstructure of AEMs was developed. The AEMs exhibit excellent overall performance, specifically the low swelling ratio HOCB-TMA-30 membrane exhibits the highest OH? conductivity of 152.9 mS/cm at 80 °C. Furthermore, the ionic conductivity of AEM decreased by only 9.5% after 2250 h of immersion in 1 M NaOH. The maximum peak power density of a single cell with a current density of 4.38 A/cm2 at 80 °C was 1.85 W/cm2.  相似文献   

13.
Anion exchange membrane (AEM) fuel cells have received significant attention due to their low fuel permeability and the use of non-platinum catalysts. However, the development of AEMs with robust chemical stability and high conductivity is still a great challenge. Herein, we prepare a new type of partially fluorinated backbone bearing pendent N-spirocyclic quaternary ammonium (QA) cations via a facile Williamson reaction, which displays great potential for fuel cells. The integration of the two substructures (a fluorinated moiety into a polymer backbone and a pendent cation structure) is beneficial for the fabrication of a well-defined micro-phase separation structure, thereby facilitating the construction of a highly-efficient ion transporting pathway. Correspondingly, the resulting AEM (PAENQA-1.0), despite its a relatively low ionic exchange capacity (0.93 meq g−1) demonstrates a conductivity of 63.1 mS cm−1 (80 °C). Meanwhile, the constrained ring conformation of N-spirocyclic QA results in improved stability of the AEMs.  相似文献   

14.
Development of anion exchange membranes (AEMs) with good performance, such as high conductivity, good alkaline stability and mechanical strength, has been a hot topic for the fuel cell application. Here, a novel kind of hyperbranched cross-linker decorated with quaternary ammonium groups was introduced to polybenzimidazole (PBI) membranes and QOPBI-x membranes (where x is the weight ratio of the hyperbranched cross-linker). Compared with the linear OPBI membrane (0.091 S cm−1), QOPBI-x membranes displayed an improved ionic conductivity (up to 0.122 S cm−1) at 60°C after they were doped in 6 M KOH for 7 days. The KOH-doped QOPBI-x membranes also exhibited a high tensile strength (54.5-61.7 MPa) and superior alkaline stability. There is almost no decline in the ionic conductivity after being immersed in a 6 M KOH solution for 30 days. In addition, the alkaline direct methanol fuel cell (ADMFC) performance based on the KOH-doped OPBI and QOPBI-x membranes is described. The QOPBI-15 membrane displayed good performance (75.6 mW cm−2), which is 33.3% higher than the OPBI membrane (56.7 mW cm−2).  相似文献   

15.
Poly[(fluorene alkylene)- co(biphenyl alkylene)] (PFBA) compounds with quaternary ammonium (QA) groups (PFBA-nC-QAs) that are linked with side chains of various lengths (n = 1~6 carbon atoms) are designed and synthesized by a superacid catalysis reaction, which has the advantages of low cost, easy synthesis and mild reaction conditions. The correlative properties of PFBA-nC-QAs, including water uptake, thermal stability, morphology, ion conductivity and alkaline stability, are discussed in detail. The side chain length is vital to the morphology and transport performance of PFBA-nC-QAs. As the side chain length increases, the alkaline stability and hydroxide ion conductivity of the prepared membranes improve with decreasing water uptake. Experimental results indicate that the hydroxide conductivity of PFBA-6C-QA is 154 mS cm?1 at 80 °C. Moreover, no degradation of functional groups of PFBA-6C-QA is observed during 30 days of immersion in 2 M NaOH at 80 °C. The peak power density of PFBA-6C-QA is 278 mW cm?2 at 60 °C with a hydrogen/air single fuel cell. By controlling the length of the polymer side chain, the method is simple and effective for building anion exchange membranes with high performance.  相似文献   

16.
Crosslinking is a valid approach to enhance the mechanical and durability performance of anion exchange membranes (AEMs). Herein, a facile and effective self-crosslinking strategy, with no need for an additional crosslinker or a catalyzer, is proposed. A series of tunable self-crosslinking and ion conduction polynorbornene membranes are designed. The 5-norbornene-2-methylene glycidyl ether (NB-MGE) component which affords self-crosslinking enhances dimensional stability, while the flexible 5-norbornene-2-alkoxy-1-hexyl-3-methyl imidazolium chloride (NB-O-Im+Cl) hydrophilic unit contributes high conductivity. The crosslinking significantly decreases the water uptake, and water swelling ratio provides excellent solvent-resistance and enhances the thermal and mechanical properties. Additionally, crosslinked rPNB-O-Im-x AEMs exhibit desirable alkaline stability. Impressively, the rPNB-O-Im-30 (IEC = 1.377) shows a moderate ion conductivity (61.8 m S cm−1, 80 °C), with a suppressed water absorption and 88.17% initial OH conductivity is maintained after treated for 240 h with a 1.0 M NaOH solution at 60 °C. Suitably assessed of rPNB-O-Im-30 AEM reveals a 98.4 mW cm−2 peak power density reached at a current density of about 208 mA cm−2. The report offers a facile and effectual preparative technique for preparing dimensional and alkaline stable AEMs for fuel cells applications.  相似文献   

17.
A kind of anion exchange membranes (AEMs) with CC bond end-group crosslinked structure was synthesized successfully. Unlike the traditional aliphatic AEMs, the AEMs were prepared in this work by a strategy to realize the CC bond thermal end-group crosslinking reaction, exhibiting an obvious microphase separation structure and a suitable dimensional stability. The well-defined ion channels constructed in the AEMs guarantee the fast OH conduction, as confirmed via physical and chemical characterization. The conductivity was dramatically enhanced due to the effective ion channels and increased ion exchange capacity. Among the as-prepared AEMs, the PHFB-VBC-DQ-80% AEM has a conductivity of 135.80 mS cm−1 at 80 °C. The single cell based on PHFB-VBC-DQ-80% can achieve a power density of 141.7 mW cm−2 at a current density of 260 mA cm−2 at 80 °C. The AEMs show good thermal stability verified by a thermogravimetric analyzer (TGA). Furthermore, the ionic conductivity of PHFB-VBC-DQ-80% only decreased by 7.1% after being soaked in a 2 M NaOH solution at 80 °C for 500 h.  相似文献   

18.
Anion exchange membranes based on quaternary ammonium-functionalized poly(ether sulfone ketone) block copolymers (QA-PESK) with various hydrophilic–hydrophobic oligomer block ratios (10:7, 10:18, and 10:26) were synthesized, and the block length effect on the membranes' physicochemical and electrical properties were systematically investigated. The QA-PESK-10-18 membrane, prepared using a hydrophilic and hydrophobic block ratio of 10:18, displayed well-balanced hydrophilic/hydrophobic phase separation, the highest conductivity of 23.19 mS cm−1 at 20 °C and 57.84 mS cm−1 at 80 °C, and the highest alkaline stability among the three block ratios tested, indicating that the membranes' properties were closely related to their morphologies, which were determined by the hydrophilic/hydrophobic ratio of the block copolymer. The H2/O2 single cell performance using the QA-PESK-10-18 revealed a maximum power density of 235 mW cm−2.  相似文献   

19.
Novel self-crosslinked alkaline electrolyte membranes with high hydroxide ion conductivity, excellent dimensional stability and extraordinary solvent resistance stability are synthesized successfully without using any catalyst or separate crosslinker. Monitored by 1H NMR analysis, the synthetic process of trimethyl poly (ether sulfone)-methylene quaternary ammonium hydroxide (TPQAOH) is found to be simple and efficient. The chemical and thermal stability of the synthetic SCL-TPQAOH-x membranes are better than other anion exchange membranes. At the same time, the hydroxide ion conductivity of SCL-TPQAOH-0.67 membrane reaches 33 mS cm−1 with an IEC value of 1.07 mmol g−1 at 80 °C, which complies with the requirements of alkaline fuel cells. This investigation also proves that self-crosslinking technology is a very simple and effective approach in improving the performance of alkaline electrolyte membranes.  相似文献   

20.
High-performance anion exchange membranes (AEMs) are in need for practical application of AEM fuel cells. Novel branched poly(ether ether ketone) (BPEEK) based AEMs were prepared by the copolymerization of phloroglucinol, methylhydroquinone and 4,4′-difluorobenzophenone and following functionalization. The effects of the branched polymer structures and functional groups on the membrane's properties were investigated. The swelling ratios of all the membranes were kept below 15% at room temperature and had good dimensional stability at elevated temperatures. The branching degree has almost no effect on the dimensional change, but plays a great role in tuning the nanophase separation structure. The cyclic ammonium functionalized membrane showed a lower conductivity but a much better stability than imidazolium one. The BPEEK-3-Pip-53 membrane with the branching degree of 3% and piperidine functionalization degree of 53% showed the best performances. The ionic conductivity was 43 mS cm−1 at 60 °C. The ionic conductivity in 1 M KOH at 60 °C after 336 h was 75% of its initial value (25% loss of conductivity), and the IEC was 83% of its initial value (17% loss of IEC), suggesting good alkaline stability. The peak energy density (60 °C) of the single H2/O2 fuel cell with BPEEK-3-Pip-53 membrane reached 133 mW cm−2 at 260 mA cm−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号