首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
2.
A mathematical model of a free piston linear engine is established. The motion characteristics as well as the natural frequency map of the free piston are established. Then, its motion characteristics are successfully explained from the oscillation point. The full simulation model is built up in Matlab/Simulink for a better understanding of its motion features. The results show that the free piston system is a forced vibration system with variable damping coefficient and stiffness. Its steady-state response of periodical excitation is convergent which means that the system is stable under the periodical combustion. Furthermore, it has some unique features which are different from those of traditional Internal Combustion (IC) engines.  相似文献   

3.
Free-piston linear generator (FPLG) engines currently gained great attention due to their capability to operate with variable fuel and compression ratio. This paper presents an experimental study on the effect of aspect ratio on the performance characteristics of the FPLG engine fueled by hydrogen. Three aspect ratios (i.e. 1.0, 1.5, and 2.0) are used to identify the engine combustion and performance parameters. The injection position is fixed in the middle of the stroke, while the equivalence ratio is kept at 1.0. The results indicate that the aspect ratio 2.0 produces the highest pressure, heat release, and shortest combustion duration. Whereas the aspect ratio 1.0 produces higher combustion efficiency and operating frequency. The piston speed decreases with the decrease in aspect ratio, which gives a negative effect on the indicated mean effective pressure and power output of the PFLG. Overall, the aspect ratio has a significant influence on engine performance characteristics.  相似文献   

4.
Hydrocarbon exhaust emissions are mainly recognized as a consequent of carbon-based fuel combustion in compression ignition (CI) engines. Alternative fuels can be coupled with hydrocarbon fuels to control the pollutant emissions and improve the engine performance. In this study, different parameters that influence the engine performance and emissions are illustrated with more details. This numerical work was carried out on a dual-fuel CI engine to study its performance and emission characteristics at different hydrogen energy ratios. The simulation model was run with diesel as injected fuel and hydrogen, along with air, as inducted fuel. Three-dimensional CFD software for numerical simulations was implemented to simulate the direct-injection CI engine. A reduced-reaction mechanism for n-heptane was considered in this work instead of diesel. The Hiroyasu-Nagel model was presented to examine the rate of soot formation inside the cylinder. This work investigates the effect of hydrogen variation on output efficiency, ignition delay, and emissions. More hydrogen present inside the engine cylinder led to lower soot emissions, higher thermal efficiency, and higher NOx emissions. Ignition timing delayed as the hydrogen rate increased, due to a delay in OH radical formation. Strategies such as an exhaust gas recirculation (EGR) method and diesel injection timing were considered as well, due to their potential effects on the engine outputs. The relationship among the engine outputs and the operation conditions were also considered.  相似文献   

5.
An opposed-piston hydraulic free piston engine operating with homogenous charge compression ignition (HCCI) combustion, has been proposed by State Key Laboratory of Engines as a means of significantly improving the IC engine’s cycle thermal efficiency and lowering exhaust emissions. Single and multi-zone Chemkin model with detailed chemical kinetics, and unique piston dynamics extracted from one dimensional gas dynamic model, have been used to analyze the combustion characteristics and engine performance. Intake heating, variable compression ratio and internal EGR are utilized to control the combustion phasing and duration in the cycle simulations, revealing the critical factors and possible limits of performance improvement relative to conventional crank engines. Furthermore, real engine effects such as heat transfer with air swirl, residual mass fraction, thermal stratification, and heat loss fraction between zones are considered in the sequential CFD/multi-zone method to approach the realistic engine performance at an acceptable knock level.  相似文献   

6.
The free-piston engine (FPE) is a new crankless engine, which operates with variable compression ratio, flexible fuel applicability and low pollution potential. A numerical model which couples with dynamic, combustion and gas exchange was established and verified by experiment to simulate the effects of different hydrogen addition on the combustion and emission of a diesel FPE. Results indicate that a small amount of hydrogen addition has a little effect on the combustion process of the FPE. However, when the ratio of hydrogen addition (RH2) is more than 0.1, the RH2 gives a positive effect on the peak in-cylinder gas pressure, temperature, and nitric oxide emission of the FPE, while soot emission decreases with the increase of hydrogen addition. Moreover, the larger RH2 induces a longer ignition delay, shorter rapid combustion period, weaker post-combustion effect, greater heat release rate, and earlier peak heat release rate for the FPE. Nevertheless, the released heat in rapid combustion period is significantly enhanced by the increase of RH2.  相似文献   

7.
Hydrogen is an attractive energy source for improving gasoline engine performance. In this paper, a new hydrogen nanobubble gasoline blend is introduced, and the influence of hydrogen nanobubble on the combustion characteristics of a gasoline engine is experimentally investigated. The test was performed at a constant engine speed of 2000 rpm, and engine load of 40, 60, and 80%. The air-to-fuel equivalence ratio (λ) was adjusted to the stoichiometric (λ = 1), for both gasoline, and the hydrogen nanobubble gasoline blend. The results show that the mean diameter and concentration of hydrogen nanobubble in the gasoline blend are 149 nm and about 11.35 × 108 particles/ml, respectively. The engine test results show that the power of a gasoline engine with hydrogen nanobubble gasoline blend was improved to 4.0% (27.00 kW), in comparison with conventional gasoline (25.96 kW), at the engine load of 40%. Also, the brake specific fuel consumption (BSFC) was improved, from 291.10 g/kWh for the conventional gasoline, to 269.48 g/kWh for the hydrogen nanobubble gasoline blend, at the engine load of 40%.  相似文献   

8.
The effects of H2 addition on soot formation are investigated in counterflow diffusion n-heptane flames. Three effects including chemical, thermal, and dilution are fully isolated and characterized by additions of H2, He, and Ar. Soot volume fractions are measured using LE-calibrated LII technique, and flame temperatures are measured using OH-TLAF method along with a thermocouple. Numerical simulations are conducted with a detailed mechanism with soot model. The simulated soot volume fractions and flame temperatures are in good agreement with experimental data. The experimental results show that H2 addition can greatly reduce the soot formation. It is also found that the chemical and dilution effects suppress soot formation, while the thermal effect with increasing flame temperature promotes soot formation. Kinetic analysis suggests that HACA growth rate could be the dominant factor that controls the final soot formation through the three effects due to H2 addition.  相似文献   

9.
A detailed numerical study was conducted to investigate the effects of hydrogen and helium addition to fuel on soot formation in atmospheric axisymmetric coflow laminar methane/air diffusion flame. Detailed gas-phase chemistry and thermal and transport properties were employed in the numerical calculations. Soot was modeled using a PAH based inception model and the HACA mechanism for surface growth and oxidation. Numerical results were compared with available experimental data. Both experimental and numerical results show that helium addition is more effective than hydrogen addition in reducing soot loading in the methane/air diffusion flame. These results are different from the previous investigations in ethylene/air diffusion flames. Hydrogen chemically enhances soot formation when added to methane. The different chemical effects of hydrogen addition to ethylene and methane on soot formation are explained in terms of the different effects of hydrogen addition on propargyl, benzene, and pyrene formation low in the flames.  相似文献   

10.
Addition of reactive or inert substances is one of the most effective and practical ways to control soot formation in combustion of hydrocarbon fuels. In this paper, the research progress on the effects of hydrogen, carbon dioxide, and water vapor addition on soot formation in hydrocarbon flames in the last few decades is systematically summarized. The summary shows that the number of studies on the effects of these three common diluents has increased dramatically in the last five years. Although the overall effects of all these three common diluents suppress soot formation, there is inconsistency with regard to the role of their chemical effects. The chemical effect of hydrogen (CE-H2) mainly acts on the soot nucleation process, followed by the soot surface growth and finally the soot oxidation process. CE-H2 seems significantly affected by the fuel type, oxygen concentration, and the ambient pressure. The chemical effect of carbon dioxide (CE-CO2) affects soot formation indirectly mainly through the reaction CO + OH ↔ CO2 + H. Some studies believe that CE-CO2 suppresses soot production by increasing the hydroxyl radical (OH) concentration, while other studies believe that it is primarily attributed to the decrease of the hydrogen radical (H) concentration. The reaction H2O + H ↔ H2 + OH plays a vital role in the chemical effect of water vapor (CE-H2O) addition on inhibiting soot formation. Most studies support the view that the chemical effect of water vapor mainly increases the OH concentration and suppresses soot formation by weakening the soot nucleation process. Moreover, we believe that reaction H2O + O ↔ OH + OH and phenylacetylene also play an essential effect on the CE-H2O.  相似文献   

11.
Variable stroke (or compression ratio) has been expected as a potential technology for optimizing engine combustion all the time. The free piston motion of linear engines introduced by its unconstrained dynamics is well suited for this expectation. This paper introduces a numerical analysis to explore the effects of variable stroke operation on the combustion and heat release of a linear hydrogen engine (LHE). A system model which couples zero-dimensional dynamics, multi-dimensional combustion, and one-dimensional gas exchange is established and verified experimentally to predict the combustion of the LHE, and then a series of simulations are performed over a range of motion stroke from 62 mm to 72 mm in 2 mm interval to evaluate its effect on LHE combustion. Results indicates that short stroke operation of the LHE shows obvious advantages in thermal efficiency and high peak combustion pressure, although the completion level of hydrogen combustion is slightly poor. Fast combustion, large heat release, and low level of post-combustion effect can be obtained by neither lengthening nor shortening from the certain stroke length of 68 mm, while serious NO emission is indicated. Long-stroke operation makes the LHE clean, although it induces slow engine speed, low thermal efficiency and output power.  相似文献   

12.
Free piston linear generator (FPLG) is a promising range extender for the electrical vehicle with unparallel advantages, such as compact structure, higher system efficiency, and reduced maintenance cost. However, due to the lack of the mechanic crankshaft, the related piston motion control is a challenge for the FPLG which causes problems such as misfire and crash and limits its widespread commercialization. Aimed at resolving the problems as misfire, a single-piston FPLG prototype has been designed and manufactured at Shanghai Jiao Tong University (SJTU). In this paper, the development process and experimental validation of the related control strategies were detailed. From the experimental studies, significant misfires were observed at first, while the FPLG operated in natural-aspiration conditions. The root cause of this misfire was then identified as the poor scavenging process, and a compressed air source was leveraged to enhance the related scavenging pressure. Afterward, optimal control parameters, in terms of scavenging pressure, air-fuel equivalence ratio, and ignition position, were then calibrated in this charged-scavenging condition. Eventually, the FPLG prototype has achieved a continuous stable operation of over 1000 cycles with an ignition rate of 100% and a cycle-to-cycle variation of less than 0.8%, produced an indicated power of 2.8 kW with an indicated thermal efficiency of 26% and an electrical power of 2.5 kW with an overall efficiency of 23.2%.  相似文献   

13.
The effects of exhaust gas recirculation (EGR) on combustion and emissions under different hydrogen ratios were studied based on an engine with a gasoline intake port injection and hydrogen direct injection. The peak cylinder pressure increases by 9.8% in the presence of a small amount of hydrogen. The heat release from combustion is more concentrated, and the engine torque can increase by 11% with a small amount of hydrogen addition. Nitrogen oxide (NOx) emissions can be reduced by EGR dilution. Hydrogen addition offsets the blocking effect of EGR on combustion partially, therefore, hydrogen addition permits a higher original engine EGR rate, and yields a larger throttle opening, which improves the mechanical efficiency and decreases NOx emissions by 54.8% compared with the original engine. The effects of EGR on carbon monoxide (CO) and hydrocarbon (HC) emissions are not obvious and CO and HC emissions can be reduced sharply with hydrogen addition. CO, HC, and NOx emissions can be controlled at a lower level, engine output torque can be increased, and fuel consumption can be reduced significantly with the co-control of hydrogen addition and EGR in a hydrogen gasoline engine.  相似文献   

14.
The ionic liquid compressor is promising for hydrogen refuelling stations, where the dynamic characteristics of the free piston are crucial for adjusting the compressor performance. This paper presents an investigation of the dynamic characteristics of the free piston in the ionic liquid compressor through a fluid-structure interaction modelling in three typical conditions. The results show that in the typical condition with no impact, phenomenons of buffering, oil charging, and oil overflow are observed in the oil pressure variation. Three features are found in the motion curve: asymmetric motion with a delay of reversal due to the buffering effect, variable location of the dead centre, and fluctuation in the piston velocity. When the impact occurs at the TDC, an opposite variation trend is observed in the gas and oil pressure curve. In the typical condition with impact at the BDC, the oil pressure drops below the atmospheric pressure.  相似文献   

15.
In the present paper, the cyclic variations of a hydrogen-blended gasoline rotary engine operated under various conditions were experimentally investigated. The experiments were carried out on a modified hydrogen-gasoline dual-fuel rotary engine equipped with an electronically-controlled fuel injection system. An electronic control module was specially made to command the fuel injection, excess air ratio and hydrogen volumetric fraction. The tested engine was first run at idle condition with a speed of 2400 rpm and then operated at 4500 rpm to investigate the cyclic variations of a hydrogen-enriched gasoline rotary engine under different hydrogen volumetric percentages in the total intake, excess air ratios and spark timings. The experimental results demonstrated that the coefficient of variations (in peak pressure, engine speed, flame development period and flame propagation period) of the gasoline rotary engine were distinctly decreased with the increase of hydrogen volume fraction under all the tested conditions. In particular, at idle and stoichiometric conditions, the coefficient of variation in CA0-10 and CA10-90 were reduced from 9.25% to 5.01%, 15.40% to 8.70%, respectively.  相似文献   

16.
Aiming to further improve the thermal efficiency and reduce NOx emissions in the stoichiometric hydrogen-enriched natural gas (NG) engine, a detailed 3-D simulation model of stoichiometric operation heavy-duty NG engine is built based on the actual boundary conditions from high load bench test. The superimposed methods for knock regulation, combustion and emission control, including Miller valve timing, hydrogen volume fraction and EGR rate were proposed and investigated comprehensively. It reveals that the typically bimodal characteristic of heat release rate (HRR) curve is caused by knock, which seriously restricts the performance improvement of stoichiometric NG engine under high load condition. To predict and control the occurrence of the second peak of HHR accurately, a new parameter BI is defined. Moreover, the Miller timing with 20°CA of the intake valve late closing shows better combustion performance within the knock limit, accompanied by a slight increase in NOx emissions. Additionally, the 5% hydrogen blend, coupled with the Miller cycle, can further enhance the indicated thermal efficiency (ITE) of the NG engine due to the stronger effects on acceleration of laminar flame propagation velocity than the promotion of end-gas auto-ignition. Besides, the great potential of EGR rate for balancing NOx and ITE is also confirmed in the heavy-duty hydrogen-enriched NG engine adopting Miller cycle. Compared to the original indexes, combing with the regulation strategies of intake valve late closing (20°CA), hydrogen addition (5%) and EGR (17%) are proved to increase the indicated thermal efficiency by 1.89% and reduce NOx emissions by 11.47% within the knock limit.  相似文献   

17.
Preliminary design and simulation of a free piston engine suitable for small-scale energy production in distributed energy systems is presented in this paper. The properties, particularly the properties of gas seals of the engine are simulated using a simulation program developed for this case, and the results are utilized in preliminary main design parameter selection. The engine simulation program was developed by combining and modifying the source codes of the simulation and calculation programs obtained from Helsinki University of Technology, Tampere University of Technology, and Lappeenranta University of Technology. Because of the contact-free labyrinth seal used in the piston, the efficiency of the motor is lower than the efficiency of a conventional motor with oil lubricated piston rings. On the other hand, the lack of bearing losses, and the lack of losses associated with a crankshaft system and a gearbox, as well as the lack of lubrication oil expenses, compensates this effect. As a net result, this new motor would perform slightly better than the conventional one. Being completely oil-free, it is very environmentally friendly, and its exhaust gases are completely free of oil residuals which are causing problems in normal gas motors.  相似文献   

18.
Hydrogen remains an attractive alternative fuel to petroleum and a number of investigators claim that adding hydrogen to the air intake manifold of a diesel engine will reduce criteria emissions and diesel fuel consumption. Such claims are appealing when trying to simultaneously reduce petroleum consumption, greenhouse gases and criteria pollutants. The goal of this research was to measure the change in criteria emissions (CO, NOx, and PM2.5) and greenhouse gases such as carbon dioxide (CO2), using standard test methods for a wide range of hydrogen addition rates. A two-stroke Detroit Diesel Corporation 12V-71TI marine diesel engine was mounted on an engine dynamometer and tested at three out of the four loads specified in the ISO 8178-4 E3 emission test cycle and at idle. The engine operated on CARB ultra-low sulfur #2 diesel with hydrogen added at flow rates of 0, 22 and 220 SLPM.  相似文献   

19.
20.
In this study, effects of hydrogen-addition on the performance and emission characteristics of Methanol-Gasoline blends in a spark ignition (SI) engine were investigated. Experiments were conducted with a four-cylinder and four stroke spark ignition engine. Performance tests were performed via measuring brake thermal efficiency, brake specific fuel consumption, cylinder pressure and exhaust emissions (CO, CO2, HC, NOx). These performance metrics were analyzed under three engine load conditions (no load, 50% and 100%) with a constant speed of 2000 rpm. Methanol was added to the gasoline up to 15% by volume (5%, 10% and 15%). Besides, hydrogen was added to methanol-gasoline mixtures up to 15% by volume (3%, 6%, 9% and 15%). Results of this study showed that methanol addition increases BSFC by 26% and decreases thermal efficiency by 10.5% compared to the gasoline. By adding hydrogen to the methanol - gasoline mixtures, the BSFC decreased by 4% and the thermal efficiency increased by 2% compared to the gasoline. Hydrogen addition to methanol – gasoline mixtures reduces exhaust emissions by about 16%, 75% and 15% of the mean average values of HC, CO and CO2 emissions, respectively. Lastly, ?t was concluded that hydrogen addition improves combustion process; CO and HC emissions reduce as a result of the leaning effect caused by the methanol addition; and CO2 and NOx emission increases because of the improved combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号