首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the major challenges for direct methanol fuel cells is the problem of methanol crossover. With the aim of solving this problem without adverse effects on the membrane conductivity, Nafion/Palladium–silica nanofiber (N/Pd–SiO2) composite membranes with various fiber loadings were prepared by a solution casting method. The silica-supported palladium nanofibers had diameters ranging from 100 nm to 200 nm and were synthesized by a facile electro-spinning method. The thermal properties, ionic exchange capacities, water uptake, proton conductivities, methanol permeabilities, chemical structures, and micro-structural morphologies were determined for the prepared membranes. It was found that the transport properties of the membranes were affected by the fiber loading. All of the composite membranes showed higher water uptake and ion exchange capacities compared to commercial Nafion 117 and proved to be thermally stable for use as proton exchange membranes. The composite membranes with optimum fiber content (3 wt%) showed an improved proton conductivity of 0.1292 S cm−1 and a reduced methanol permeability of 8.36 × 10−7 cm2 s−1. In single cell tests, it was observed that, the maximum power density measured with composite membrane is higher than those of commercial Nafion 117.  相似文献   

2.
In this study, the properties of BaO–Al2O3–SiO2 (SAB) glasses incorporated with CaO and V2O5 as the network modifier and additive, respectively, are evaluated. The electrical resistivities of the glasses decrease upon the addition of CaO but increase upon increasing their V2O5 content because the V5+ species lower the ionic mobility of the glasses. The addition of V2O5 improves the wettability of the glasses on the Crofer 22 APU substrate, and thus, increases the fracture strength at the glass–Crofer 22 APU couple. Among the glasses evaluated, the SAB glass with a CaO content of 20 wt% and V2O5 content of 2 wt% (SAB-Ca20V2) present excellent sealing properties because it adheres well to both the Zr0·92Y0·08O2-δ (YSZ) and Crofer 22 APU substrates; no pores, cracks, or interfacial phases are present at the interfaces, confirming the good chemical and thermal compatibility of the glass–substrate pairs at high temperatures. After SAB-Ca20V2 is sealed on the Crofer 22 APU substrate at 850 °C, the leakage rate of the glass is low (<0.015 sccm?cm?1 at 800 °C for 200 h), indicating negligible deterioration of its sealing efficiency and revealing its remarkable potential for use in solid oxide fuel cell applications.  相似文献   

3.
The sol–gel flux phase of direct methanol fuel cell is prepared by the modified sol–gel method with starting materials of Na2SiO3 or Si(OCH3)4, methanol and sulfuric acid, and characterized by SEM. The methanol permeability and electrochemical characteristics of the sol–gel flux phase are investigated. The mass transportation mechanism and the process of methanol has been changed by the porous structure of the sol–gel flux phase. The methanol permeability of the sol–gel flux phase decreases more than 90% compared with the liquid flux phase of 1 mol L?1 CH3OH and 1 mol L?1 H2SO4. A novel direct methanol fuel cell with sol–gel flux phase is designed. The power density of which is higher than that of the cell with liquid flux phase.  相似文献   

4.
Nafion® 117 membranes doped with Pt (4 × 10−4 mol L−1 or 8 × 10−4 mol L−1 H2PtCl6 solution), and with Pt–Ru (4 × 10−4 mol L−1 H2PtCl6 and 2 × 10−4 mol L−1 RuCl3 solutions) nanoparticles have been synthesized using a simple and scalable absorption-reduction method. The chemical integrity of the membranes was confirmed by 13C and 19F solid-state NMR. The pore microstructure of the membranes was preserved after the doping process, according to SAXS measurements. The tests of the direct ethanol fuel cells (DEFC) performance at 90 °C exhibited up to 38% and 56% increase at the maximum power densities for Pt doped-Nafion® membrane from lower and higher concentration of H2PtCl6 solution, respectively, compared to bare Nafion® membranes. Additionally, a Pt–Ru doped-membrane tested at 110 °C exhibited the highest power density. Such superior performances may be attributed to a synergistic effect between the extra amount of active catalytic sites inside the pore structure for the electrochemical oxidation of ethanol, thus preventing ethanol crossover, and the excellent proton migration properties conferred by the pore microstructure of Nafion®. These results demonstrate that the doped-Nafion® membrane has a good capacity to improve the performance of DEFC, and provided further clarification on the synthesis process of polymer electrolyte doped-membranes in fuel cell technology.  相似文献   

5.
A series of organic–inorganic membranes were prepared through sol–gel reaction of quaternized poly(vinyl alcohol) (QAPVA) with different contents of tetraethoxysilanes (TEOS) for alkaline direct methanol fuel cells. These hybrid membranes are characterized by FTIR, X-ray diffraction (XRD), scanning electron microscopy/energy-dispersive X-ray analysis (SEM/EDXA) and thermo gravimetric analysis (TGA). The ion exchange content (IEC), water content, methanol permeability and conductivity of the hybrid membranes were measured to evaluate their applicability in fuel cells. It was found that the addition of silica enhanced the thermal stability and reduced the methanol permeability of the hybrid membranes. The hybrid membrane M-5, for which the silica content was 5 wt%, showed the lowest methanol permeability and the highest ion conductivity among the three hybrid membranes. The ratio of conductivity to methanol permeability of the membrane M-5 indicated that it had a high potential for alkaline direct methanol fuel cell applications.  相似文献   

6.
7.
Pt–MoO3 was synthesized by microwave-assisted chemical reduction. The physicochemical characterization showed that the electrocatalyst contained nanoparticles of Pt and clusters of MoO3. The average particle size of the catalytic material was 2.5 nm. The electrochemical results showed that the Pt–MoO3/C was suitable to carry out the electrooxidation reactions of ethanol and methanol indistinctly, avoiding CO poisoning. It was possible to compare the results with commercial Pt/C. The synthesized material showed a better electrochemical performance. Different simulations were performed using the Nernst equation to evaluate the influence of temperature, internal resistance, and the current density losses as a function of the fuel used. The theoretical results indicated that the electrical power of the mono-cell improves by 21.5% when the energy vector is changed from methanol to ethanol at the maximum power point, obtaining an electrical potential change ΔE = 87.02 mV and a variation of the electric power of Δp = 114.14 mW cm?2. The use of dual fuels could improve the performance of experimental fuel cells.  相似文献   

8.
9.
The electrocatalytic activity of Pt and RuO2 mixed electrodes of different compositions towards methanol oxidation was investigated. The catalysts were prepared by thermal decomposition of polymeric precursors and characterized by energy dispersive X-ray, scanning electronic microscopy, X-ray diffraction and cyclic voltammetry. This preparation method allowed obtaining uniform films with controlled stoichiometry and high surface area. Cyclic voltammetry experiments in the presence of methanol showed that mixed electrodes decreased the potential peak of methanol oxidation by approximately 100 mV (RHE) when compared to the electrode containing only Pt. In addition, voltammetric experiments indicated that the Pt0.6Ru0.4Oy electrode led to higher oxidation current densities at lower potentials. Chronoamperometry experiments confirmed the contribution of RuO2 to the catalytic activity as well as the better performance of the Pt0.6Ru0.4Oy electrode composition. Formic acid and CO2 were identified as being the reaction products formed in the electrolysis performed at 400 and 600 mV. The relative formation of CO2 was favored in the electrolysis performed at 400 mV (RHE) with the Pt0.6Ru0.4Oy electrode. The presence of RuO2 in Pt–Ru-based electrodes is important for improving the catalytic activity towards methanol electrooxidation. Moreover, the thermal decomposition of polymeric precursors seems to be a promising route for the production of catalysts applicable to DMFC.  相似文献   

10.
A full-electrochemical method is developed to deposit three dimension structure (3D) flowerlike platinum-ruthenium (PtRu) and platinum-ruthenium-nickel (PtRuNi) alloy nanoparticle clusters on multi-walled carbon nanotubes (MWCNTs) through a three-step process. The structure and elemental composition of the PtRu/MWCNTs and PtRuNi/MWCNTs catalysts are characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray polycrystalline diffraction (XRD), IRIS advantage inductively coupled plasma atomic emission spectroscopy (ICP-AES), and X-ray photoelectron spectroscopy (XPS). The presence of Pt(0), Ru(0), Ni(0), Ni(OH)2, NiOOH, RuO2 and NiO is deduced from XPS data. Electrocatalytic properties of the resulting PtRu/MWCNTs and PtRuNi/MWCNTs nanocomposites for oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) are investigated. Compared with the Pt/MWCNTs, PtNi/MWCNTs and PtRu/MWCNTs electrodes, an enhanced electrocatalytic activity and an appreciably improved resistance to CO poisoning are observed for the PtRuNi/MWCNTs electrode, which are attributed to the synergetic effect of bifunctional catalysis, three dimension structure, and oxygen functional groups which generated after electrochemical activation treatment on MWCNTs surface. The effect of electrodeposition conditions for the metal complexes on the composition and performance of the alloy nanoparticle clusters is also investigated. The optimized ratios for PtRu and PtRuNi alloy nanoparticle clusters are 8:2 and 8:1:1, respectively, in this experiment condition. The PtRuNi catalyst thus prepared exhibits excellent performance in the direct methanol fuel cells (DMFCs). The enhanced activity of the catalyst is surely throwing some light on the research and development of effective DMFCs catalysts.  相似文献   

11.
The paper addresses the effect of the carbon support on the microstructure and performance of Pt–Ru-based anodes for direct methanol fuel cells (DMFC), based on the study of four electrodes with a carbon black functionalized with HNO3, a mesoporous carbon (CMK-3), a physical mixture of TiO2 and carbon black and a reference carbon thermally treated in helium atmosphere (HeTT). It is shown that CMK-3 hinders the growth of the electrocatalyst nanoparticles (2.7 nm) and improves their distribution on the support surface, whereas the oxidized surfaces of HNO3 carbon and TiO2+carbon lead to larger (4–4.5 nm), agglomerated particles, and the lowest electrochemical active areas (54 and 26 m2 g−1, in contrast with 90 m2 g−1 for CMK-3), as determined from CO stripping experiments. However, HNO3 and TiO2 are characterized by the lowest CO oxidation potential (0.4 V vs. RHE), thus suggesting higher CO tolerance for the se electrodes. Tests in DMFC configuration show that the three modified electrodes have clearly better performance than the reference HeTT. The highest power density attained with electrodes supported on carbon treated with HNO3 (65 mW cm−2/300 mA cm−2 at 90 °C) and the equally interesting performance of the TiO2-based electrodes (53 mW cm−2/300 mA cm−2), is a strong indication of the positive effect of the presence of oxygenated groups on the methanol oxidation reaction. The results are interpreted in order to identify separate microstructural (electrocatalyst particle size, porosity) and compositional (oxygenated surface groups, presence of oxide phase) effects on the electrode performance.  相似文献   

12.
《Journal of power sources》2002,109(2):439-445
A RuO2 diffusion layer is examined for use in direct methanol fuel cells (DMFC) by comparison with acetylene black and Vulcan XC-72R. In the test with a DMFC unit cell, the RuO2 diffusion layer is superior to the other two materials. The difference in performance is interpreted in terms of structural and electrical properties which are evaluated by porosity, scanning electron microscopy and resistance measurements. The RuO2 diffusion layer displays different behaviors at the anode and cathode sides. These characteristics can be attributed to a reduced loss of catalyst in the active catalyst layer, which leads to increased methanol diffusion at the anode and prevention of water flooding in the cathode. The effect of the RuO2 diffusion layer on cell performance becomes more pronounced at lower temperatures and during operation in the presence of air. Finally, a carbon–RuO2 composite is evaluated as a diffusion layer material for a DMFC.  相似文献   

13.
Nano-sized binary and ternary alloys are synthesized by polyol process on Vulcan XC72-R support. Nanostructured binary Pt–Pd/C catalysts are prepared either by co-deposition or by depositing on each other. Ternary Pt–Pd–Ru/C catalysts are prepared by co-deposition. The structural characteristics of the nanocatalysts are examined by TEM and XRD. Their electrocatalytic activity toward methanol oxidation and CO stripping curves were measured by electrochemical measurements and compared with that of commercial Pt/C catalyst. The results show that the binary nanocatalyst prepared by depositing the Pt precursor colloids on Pd-Vulcan XC-72R are more active toward methanol oxidation than that of the co-deposited binary alloy nanocatalyst. The co-deposited ternary Pt–Pd–Ru/C nanocatalyst based membrane electrodes assembly shows higher power density compared to the binary nanocatalysts as well as commercial Pt/C catalyst in direct methanol fuel cell. Significantly higher catalytic activity of the nanocatalysts toward methanol oxidation compared to that of the commercial Pt/C is believed to be due to lower level of catalyst poisoning.  相似文献   

14.
《Journal of power sources》2002,109(2):500-506
An all-solid-state supercapacitor is fabricated and optimized using a Nafion® membrane and an ionomer. The device shows good capacitance (ca. 200 F g−1) as demonstrated by cyclic voltammograms (CVs) and charge–discharge curves. The supercapacitor exhibits a relatively stable capacitance during l0,000 cycles of operation. A hybrid system comprising a direct methanol fuel cell (DMFC) and an all-solid-state supercapacitor has been designed and tested. It is confirmed that the power discharged by the supercapacitor is transferred effectively to the DMFC. The power of the hybrid is immediately improved by 30% compared with that of a DMFC alone operating at 25 °C. The possibilities of using this system for high energy and high instantaneous power devices and integrated fabrication processes are discussed.  相似文献   

15.
This study is aimed to replace graphite bipolar plates in PEM fuel cells with surface modified aluminum alloy. To improve the surface characteristics of aluminum alloy 5251 (AA5251) substrate, Ni–P and Ni–Co–P coatings were deposited using electroless and electroplating deposition techniques [power supply and chronoamperometry]. Surface morphology and chemical composition of prepared coatings have been investigated using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques. The corrosion behaviour of Ni–P and Ni–Co–P coated AA5251 was studied in (0.5 M H2SO4 + 2 ppm HF) solution by potentiodynamic polarization technique. Lower corrosion current densities and more positive corrosion potentials were gained after coating AA5251 with Ni–P and Ni–Co–P deposits. Much better corrosion resistance was shown by coatings containing cobalt. Potentiostatic tests were carried out at +160 mV (MMS) in air-saturated solution to simulate cathode environment in PEM fuel cells. The current density of Ni–Co–P (1:1)/AA5251 was stabilized at a value lowered by 4 times relative to that at bare AA5251 substrate. Interfacial contact resistance values between coated substrates and carbon paper were measured. Ni–P and Ni–Co–P coatings prepared by electroless method showed ICR values, twice that at ones prepared by electroplating power supply technique.  相似文献   

16.
Coking is a major issue with the traditional Ni-based anodes when directly oxidizing CH4 in solid oxide fuel cells (SOFCs). Dry reforming to convert CH4–CO2 into CO–H2 syngas before entering Ni-based anode may potentially be an effective and economical method to address the coking problem. Consequently, an on-cell reforming layer outside the Ni-based anode is expected to offer a unique solution for direct CH4–CO2 SOFCs without coking. In this study, Ni-GDC anode-supported cells with and without a Sr2Co0.4Fe1.2Mo0.4O6-δ (SCFM) layer outside the anode support have been fabricated and evaluated using either H2 or CH4–CO2 as fuel. Both types of cells show excellent electrochemical performance when H2 is used as fuel, and the SCFM layer has negligible impact on the cell performance. When CH4–CO2 is used as fuel, however, the electrochemical performance and durability of the cells with the SCFM layer are much better than those without the SCFM layer outside the Ni-GDC anode, indicating that the SCFM layer can efficiently perform dry reforming. This unique on-cell dry reforming design enables direct CH4–CO2 solid oxide fuel cells and offers a very promising route for energy storage and conversion.  相似文献   

17.
A series of carbon supported Pt–Fe bimetallic nanocatalysts (Pt–Fe/C) with varying Pt:Fe ratio were prepared by a modified ethylene glycol (EG) method, and then heat-treated under H2–Ar (10 vol%-H2) atmosphere at 900 °C. The Pt–Fe/C catalysts were characterized by X-ray diffraction (XRD), transmission electron spectroscopy (TEM), energy dispersive analysis by X-rays (EDX) and induced coupled plasma-atomic emission spectroscopy (ICP-AES). XRD analysis shows that Pt–Fe/C catalysts have small crystalline particles and form better Pt–Fe alloy structure with Fe amount increasing. TEM images evidence that small Pt–Fe nanoparticles homogeneously deposited on carbon support and addition of Fe can effectively prevent Pt particles agglomeration. EDX and ICP-AES show that Fe precursor cannot be fully reduced and deposited on carbon support through the adopted EG reduction approach. The electrochemical surface area of Pt–Fe/C catalyst obtained through hydrogen desorption areas in the CV curve increases with Fe atomic percentage increasing from 0 to ca. 50%, and then decreases with more Fe in the Pt–Fe/C catalyst. RDE tests show that the Pt–Fe/C with a Pt:Fe ratio of 1.2:1 and an optimized lattice parameter of around 3.894 Å has the highest mass activity and specific activity to oxygen reduction reaction (ORR). As cathode catalyst, this Pt–Fe/C (Pt:Fe ratio of 1.2:1) exhibits higher direct methanol fuel cell performance at 90 °C than Pt/C and other Pt–Fe/C catalysts, this could be attributed to its smaller particle size and better Pt–Fe alloy structure.  相似文献   

18.
Pure Al and some of its alloys [Al alloy 6061 (AA6061), Al alloy 3004 (AA3004) and Al alloy 1050 (AA1050)] were coated with Ni–Co–P using electroplating power supply technique. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques were applied to study the surface morphology and chemical composition of coated aluminum substrates. Their performance against corrosion was examined using potentiodynamic polarization technique in (0.5 M H2SO4 + 2 ppm HF) solution. Corrosion potential values were shifted in the positive direction at all aluminum substrates after their coating with Ni–Co–P. Corrosion current density values at coated pure Al and AA1050 were decreased by ∼18.6 times, compared to those at bare substrates. The stability of coated aluminum alloys was investigated during long-time operation under cathodic environment in PEMFCs using potentiostatic polarization test at +160 mV (MMS) in air-saturated solution. Ni–Co–P/AA3004 substrate showed a high corrosion rate after short time, while coated AA6061 one slowly corroded. Interfacial contact resistance (ICR) values between metallic bipolar plates and gas diffusion layer were measured. Coating AA1050 with Ni–Co–P reduces its ICR value by 13 times. Accordingly, electroplated Ni–Co–P/AA1050 substrate can be chosen as an efficient bipolar plate material in PEMFCs.  相似文献   

19.
We report the results obtained in the preparation and characterization of MoxRuySez electrocatalysts for oxygen reduction reaction and the design, construction and characterization of a H2–O2 fuel cell using MoxRuySez. The catalysts were characterized with respect to their electrocatalytic properties. The fuel cell was designed and built with MoxRuySez supported on carbon as cathode, Pt supported on carbon as anode, and H2SO4 as the electrolyte. The fuel cell was tested at room temperature and atmospheric pressure. The H2–O2 cell showed an efficiency in the order of 30%.  相似文献   

20.
We report the results obtained in the characterization of binary W–Se, Ru–Se as well as ternary W–Ru–Se and Mo–Ru–Se electrocatalysts prepared by screen printing and chemical synthesis. The results indicate that Mo–Ru–Se based catalysts prepared by chemical synthesis possess good electrocatalytic activity for oxygen reduction. The final composition of the compound depends on the starting weight percentage of the carbonyl compounds and the post-preparation processing. As-prepared, Mo–Ru–Se was found to be stable in acid medium (H2SO4) with high catalytic activity, but after heat treatment the catalytic activity reduced appreciably due to the loss of Se from the compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号