首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Design and synthesis of platinum catalysts within atomic level are of great significance for the practical application of fuel cells. We found that the ultrathin Co(OH)2 nanoparticles can be converted into Co3O4–Co core-shell nanostructures through a thermal annealing process in reducing atmosphere, which are uniformly distributed on the surface of 3D graphene (3DG). The Co3O4–Co core-shell nanoparticles have been successfully transformed into Co3O4–Pt core-shell nanoparticles via a controlled replacement reaction. The Co3O4–Pt @3DG contains only a few atomic layers of Pt shell, and presents a high Pt utilization nanostructure. Besides, the 3D graphene serves as a catalysts carrier with open structure, and offers a three-dimensional molecular accessibility and conducive to mass transfer. Significantly, the optimized mass activity and specific activity of 1.018 A/mgPt and 2.17 mA/cm2 have been achieved on Co3O4–Pt @3DG at 0.9 V vs RHE, which are 7.6- and 8.1- times higher than those of Pt/C (0.134 A/mgPt and 0.266 mA/cm2), respectively. The high activity is mainly attributed to the ultrathin core-shell structure with an ultrahigh Pt utilization, and the interaction between the near-surface Co3O4 and the surface Pt shell with a tensile strain to surface Pt shell, and the electrons transfer from Co to Pt.  相似文献   

2.
Designing highly efficient and low-cost electrocatalysts is essential for water splitting. Herein, urchin-like Co3O4 microspheres are firstly grown on nickel foam by a hydrothermal method, then Oxygen vacancies, phosphorus doping are effectively assembled in Co3O4 electrocatalysts. The introduction of oxygen vacancies and phosphorus doping will adjust the electronic structure of Co which increase the intrinsic catalytic activity and improve the adsorption energy of intermediates, simultaneously, progressively transform the crystal into randomly arranged atoms structure with short range order resulting in more active sites participate in the catalytic reaction. Moreover, the catalyst of vacancies Co3O4-Ov and phosphorus doping Co3O4–P demonstrate excellent performance in oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline media, Co3O4-Ov sample served as anode while Co3O4–P as cathode to form an electrolytic cell needs only 1.58 V to reach 20 mA cm?2 for overall water splitting.  相似文献   

3.
Fe2O3–TiO2 composite incorporated NiP coating is a known promising catalytic coating for electrocatalytic Hydrogen Evolution Reaction (HER). It is explored in the present study that the activity of the coating can be enhanced by incorporation of rGO. The Fe2O3–TiO2/rGO, electrocatalyst is synthesized by a facile hydrothermal method. Various compositions of the Fe2O3–TiO2/rGO incorporated NiP coatings on mild steel substrate are developed by a chemical reduction method. The developed Fe2O3–TiO2/rGO composite coating exhibits effective hydrogen evolution reaction activity with a Tafel slope of 98 mV dec−1 and a low overpotential of 96 mV at a current density of 10 mA cm−2. The hydrogen evolution reaction mechanism comprises of Volmer (adsorption of Hydrogen atom) followed by Heyrovskii (reduction to H2). The enhanced catalytic activity by the incorporation of rGO into the coating is due to three dimensional projections of nano Fe2O3–TiO2 on the folded surface of rGO. It effectively enhances the electrochemically active surface area of the coated electrode. The electrode is highly stable during alkaline HER. These results reveal that Fe2O3–TiO2/rGO can be treated as an effective electrocatalyst during HER from alkaline solutions. The conclusions pave the way for exploration of new similar catalysts for other applications.  相似文献   

4.
In this study, we incorporate a copper impurity into (Co3O4) nanowires precursor that turn them into an active catalyst for the hydrogen evolution reaction in 1M KOH. The XRD and XPS results are in good agreement and confirmed the formation of Co3O4–CuO nano-composite by wet chemical method. To date, the performance of hydrogen evolution reaction in alkaline for the composite catalyst is comparable or superior to cobalt oxide based HER electro-catalysts. The HER catalyst exhibits the lowest Tafel slope of 65 mVdec−1 for the cobalt-based catalysts in alkaline media. A current density of 10 mA/cm2 is achieved at a potential of 0.288 V vs reversible hydrogen electrode (RHE). The mixed transition metal oxide Co3O4–CuO based HER electro-catalyst is highly stable and durable. The EIS results demonstrates that HER is highly favorable on the Co3O4–CuO due to the relatively small charge transfer resistance (173.20 Ohm) and higher capacitance values (1.97 mF).  相似文献   

5.
In current research, hierarchical flower-like Ag/Fe3O4/graphene ternary nanocomposites were prepared successfully by a refluxing co-precipitation method. In the synthesis process of the samples, the various reaction conditions such as reflux time and temperature, type of capping agent and reducing agent were investigated. After characterization of the products by XRD, EDS, VSM, FESEM, HRTEM and UV–Vis DRS analysis, the nanocomposites were applied as novel nanophotocatalysts for desulfurization of thiophene under visible light illumination. Results indicate that the porous flower-like Ag/Fe3O4/graphene photocatalyst with appropriate band gap energy (2.73 eV), has excellent photocatalytic desulfurization activity (~95%) after 2 h of visible light irradiation, even after 10 cycles. Furthermore, the reliable photo-oxidation mechanism was explained based on the active species trapping experiments, which exhibited that the oxidative h+ and ?O2? species were the dominant active species in the photodesulfurization process. Also, the photocatalyst particles can efficiently separate from the solution by applying a magnetic field.  相似文献   

6.
Development of efficient, low cost and multifunctional electrocatalysts for water splitting to harvest hydrogen fuels is a challenging task, but the combination of carbon materials with transition metal-based compounds is providing a unique and attractive strategy. Herein, composite systems based on cobalt ferrite oxide-reduced graphene oxide (Co2FeO4) @(rGO) using simultaneous hydrothermal and chemical reduction methods have been prepared. The proposed study eliminates one step associated with the conversion of GO into rGO as it uses direct GO during the synthesis of cobalt ferrite oxide, consequently rGO based hybrid system is achieved in-situ significantly, the optimized Co2FeO4@rGO composite has revealed an outstanding multifunctional applications related to both oxygen evolution reaction (OER) and hydrogen counterpart (HER). Various metal oxidation states and oxygen vacancies at the surface of Co2FeO4@rGO composites guided the multifunctional surface properties. The optimized Co2FeO4@rGO composite presents excellent multifunctional properties with onset potential of 0.60 V for ORR, an overpotential of 240 mV at a 20 mAcm?2 for OER and 320 mV at a 10 mAcm?2 for HER respectively. Results revealed that these multifunctional properties of the optimized Co2FeO4@ rGO composite are associated with high electrical conductivity, high density of active sites, crystal defects, oxygen vacancies, and favorable electronic structure arisinng from the substitution of Fe for Co atoms in binary spinel oxide phase. These surface features synergistically uplifted the electrocatalytic properties of Co2FeO4@rGO composites. The multifunctional properties of the Co2FeO4@ rGO composite could be of high interest for its use in a wide range of applications in sustainable and renewable energy fields.  相似文献   

7.
Highly proficient electro and solar catalyst of mixed metal oxides Co3O4–TiO2 modified with graphene oxide (GO) have been synthesized by simple and cost-effective way using sol-gel methodology. This catalyst demonstrated versatile bi-functional features towards the hydrogen evolution reaction (HER) in catalytic water splitting along with solar photo catalytic activity in the degradation of Methyl Orange (MO). XRD profile confirmed that composite presented an anatase and cubic phase for TiO2 and Co3O4, respectively, with the GO network. The morphological structures confirm flaky texture of Co3O4 with small irregular spheres of TiO2 nanoparticles randomly dispersed on the broken sheets of GO. GO and clusters of Co2+/Co3+ in different regions of host TiO2 are accountable for decreasing band gap in the composite samples. Co–O–Ti and Co–Ti–C linkages in the composite materials are confirmed by Raman and FTIR studies. In electro catalytic HER in alkaline medium GO/Co3O4–TiO2 catalyst illustrated low onset potential ~343 mV vs. RHE, high current density ~43 mA cm−2 corresponding small Tafel slope ~97 mV/dec and small Rct as compared to other catalysts. For HER in GO/Co3O4–TiO2, Co2+ sites are more catalytically active than Co3+ sites along with Ti4+ and GO provides the more active surface area by reducing the agglomeration between the mixed metal oxides. GO/Co3O4–TiO2 shows the highest photo catalytic performance over MO as compared to binary and ternary composites. Pining of metal oxides with reactive oxygen functional moieties of GO considerably improve the photo catalytic degradation activity and helpful in the separation of charge carriers for HER.  相似文献   

8.
Currently, multifunctional electrocatalysts with superior performance are very vital for developing various clean and regenerated energy systems. Herein, an effective multifunctional electrocatalyst comprising Fe2O3 nanoparticles immobilized on N and S codoped C has been synthesized via heat-treatment of Fe(II) complex at 800 °C (denoted as Fe2O3/NS-C-800). Favorable features including the introduction of maghemite nanoparticles, N/S-codoping effect, and close contact between the Fe2O3 nanoparticles and NS-C ender the Fe2O3/NS-C-800 with high multifunctional catalytic performance. The onset potential (0.97 V) and half-wave potential (0.81 V) of the Fe2O3/NS-C-800 towards oxygen reduction reaction (ORR) are comparable to Pt/C (0.99 and 0.82 V). The Fe2O3/NS-C-800 also exhibits high oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activity with low OER and HER overpotentials of 0.37 and −0.27 V at 10 mA cm−2, respectively. In addition, higher ORR, OER and HER stabilities than Pt/C are observed for the Fe2O3/NS-C-800. More importantly, the assembled water electrolyzer using the Fe2O3/NS-C-800 as the anode and cathode exhibits a high stability at a water electrolysis current density of 10 mA cm−2. The present study offers a new promising non-noble multifunctional catalyst for future application in renewable energy technologies.  相似文献   

9.
Spinel CoFe2O4 supported on three dimensional graphene (3DG) is prepared by hydrothermal reaction, which is denoted as CoFe2O4/3DG. The 3DG is prepared by the templated method, where coal tar pitch (CTP) and MgO are used as the carbon source and the template, respectively. The microstructure and composition of the resultant have been investigated by X-ray diffraction as well as X-ray photoelectron spectroscopy indicating the formation of spinel CoFe2O4 and composite of CoFe2O4/3DG. The multilayer structure of 3DG and CoFe2O4/3DG is also examined by the Raman spectra. Electrochemically, CoFe2O4/3DG shows high-performance half-wave potential is 0.80 V vs. RHE in O2-saturated 0.1 M KOH, which is compared to 20 wt% Pt/C. When evaluated for OER activity, CoFe2O4/3DG obtains a low overpotential 1.63 V vs. RHE (at j = 10 mA cm−2), which is 180 mV better than 20 wt% Pt/C. Moreover, it possesses excellent durability superior to 20 wt% Pt/C.  相似文献   

10.
Hydrogen evolution reaction (HER) has been identified as a sustainable and environment friendly technology for a wide range of energy conversion and storage applications. The big barrier in realizing this green technology requires a highly efficient, earth-abundant, and low-cost electrocatalyst for HER. Various HER catalysts have been designed and reported, still, their performance is not up to the mark of Pt. Among them, cobalt-based, especially cobalt disulfide (CoS2) has shown significant HER activity and found suitable candidature for HER due to its low cost, simple to prepare, and exhibits good stability. Herein, we synthesized various nanostructured materials including pure CoS2, Co3O4 and their composites by wet chemical methods and found them active for HER. The scanning electron microscopy (SEM) has revealed a morphology of composite as a mixture of nanowires and round shape spherical nanoparticles with several microns in dimension. The X-ray diffraction (XRD) confirmed the cubic phase of CoS2 and cubic phase of Co3O4 in the composite materials. The chemical deposition of CoS2 onto Co3O4 has tailored the HER activity of CoS2@Co3O4 composite material. Two CoS2@Co3O4 composite materials were produced with varying amounts of Co3O4 and labeled as samples 1 and 2. The Co3O4 reduced the adsorption energy for hydrogen, decreased the aggregation of CoS2 and uplifted the stability of CoS2@Co3O4 a composite material in alkaline media. Sample 1 requires an overpotential of 320 mV to reach a current density of 10 mA/cm2 and it exhibits a Tafel slope of 42 mVdec−1which is the key indicator for the fast HER kinetics on sample 1. The sample 1 is highly durable for 50 h and also it has excellent stability. The electrochemical impedance spectroscopy (EIS) revealed a small charge transfer resistance of 28.81 Ohms for the sample 1 with high capacitance double-layer value of 0.81 mF. EIS has supported polarization and Tafel slope results. Based on the partial physical characterization and the electrochemical results, the as-obtained sample 1 (CoS2@Co3O4 composite material) will find potential applications in an extended range of energy conversion and storage devices owing to its low cost, high abundance, and excellent efficiency.  相似文献   

11.
An electrocatalyst based on a unique three-dimensional (3D) N-doped porous carbon sheet networks embedded with CoP2 nanoparticles (CoP2@3D-NPC) was synthesized by a facile pyrolysis process as well as an in-situ phosphatization method. The improved CoP2@3D-NPC hybrid materials show excellent electrocatalytic activity toward HER and OER. This material provides a low overpotential of 126 mV at 10 mA cm−2 in 0.5 M H2SO4 and 167 mV at 20 mA cm−2 in 1.0 M KOH for HER with a small Tafel slope value of 59 mV dec−1, respectively. Besides, it is also active for the OER under alkaline conditions. Such a prominent property of the CoP2@3D-NPC electrocatalyst could be attributed to its excellent electrical conductivity of 3D carbon substrate, strong synergistic effect between CoP2 nanoparticles and carbon nanosheet as well as extra active sites created by the N-doped structure.  相似文献   

12.
In this paper, Fe3O4/C–Bi composites with carbon coating and bismuth added were prepared by step-by-step precipitation, spray carbon coating drying and high temperature treatment. The composite materials are spherical particles, which are composed of primary nanoparticles coated with carbon, and the thickness of the carbon coating layer is 2 nm. Electrochemical test results show that the synergistic effect of Bi and C can effectively inhibit hydrogen evolution and passivation of iron electrodes. The Fe3O4/C–Bi composite materials have excellent electrochemical properties, among which the Fe3O4/C–Bi(5%) electrode has the best performance. At a current density of 300 mA g?1, the discharge capacitance is close to 700.0 mAh g?1, the coulombic efficiency is as high as 95.2%, and the rate performance is also excellent. At a current density of 2400 mA g?1, the discharge capacity reaches 500.0 mAh g?1. AA600 cylindrical iron nickel batteries prepared with an Fe3O4/C–Bi(5%) composite as the active material for iron negative electrodes realized sealing for the first time.  相似文献   

13.
Developing a bi-functional material which can meet both electrochemical water splitting and supercapacitors (SCs) is a hot spot in current research. In this study, hierarchical zigzag-like phosphorus doped CuCo2O4 nanosheets based 3D electrode materials were successfully synthesized via a hydrothermal method and followed by thermal treatment. Since the unique morphology of 2D nanosheets with zigzag-like edges could provide more reactive sites, which is not only conducive to the hydrogen evolution reaction (HER), but also conducive to the electrochemical energy storage. Meanwhile, the doping of phosphorus was adopted to improve the conductivity, which would further enhance the electrochemical properties of CuCo2O4. Thereafter, its performance for HER and SCs in 1 M KOH were systematically investigated. As an electrode for HER, it only required a low overpotential of 152 mV to reach 10 mA cm?2 with a Tafel slope of 115.7 mV dec?1. Furthermore, I-t test result showed an excellent stability. As an electrode for SCs, it exhibited a high specific capacity of 896.9C g?1 at 1 A g?1 in three-electrode system. All in all, the obtained hierarchical zigzag-like phosphorus doped CuCo2O4 nanosheets provided a feasible route for the design of bi-functional electrode materials both for energy conversion and storage.  相似文献   

14.
To meet the demand of producing hydrogen at low cost, a molybdenum (Mo)-doped cobalt oxide (Co3O4) supported on nitrogen (N)-doped carbon (x%Mo–Co3O4/NC, where x% represents Mo/Co molar ratio) is developed as an efficient bifunctional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). This defect engineering strategy is realized by a facile urea oxidation method in nitrogen atmosphere. Through X-ray diffraction (XRD) refinement and other detailed characterizations, molybdenum ion (Mo4+) is found to be doped into Co3O4 by substituting cobalt ion (Co2+) at tetrahedron site, while N is doped into carbon matrix simultaneously. 4%Mo–Co3O4/NC is the optimized sample to show the lowest overpotentials of 91 and 276 mV to deliver 10 mA cm?2 for HER and OER in 1 M potassium hydroxide solution (KOH), respectively. The overall water splitting cell 4%Mo–Co3O4/NC||4%Mo–Co3O4/NC displays a voltage of 1.62 V to deliver 10 mA cm?2 in 1 M KOH. The Mo4+ dopant modulates the electronic structure of active cobalt ion (Co3+) and boosts the water dissociation process during HER, while the increased amount of lattice oxygen and formation of pyridinic nitrogen due to Mo doping benefits the OER activity. Besides, the smaller grain size owing to Mo doping leads to higher electrochemically active surface area (ECSA) on 4%Mo–Co3O4/NC, resulting in its superior bifunctional catalytic activity.  相似文献   

15.
Developing the novel catalysts with an excellent performance of hydrogen generation is essential to facilitate the application of hydrogen evolution reaction (HER). Herein, a heterostructured cobalt phosphide/nickel phosphide/carbon cloth (CoP/Ni2P/CC) composite was fabricated via an interfacial engineering strategy to achieve the modification of CoP nanoleaf on Ni2P nanosheet skeleton supported by carbon cloth. By virtue of the unique heterostructure, abundant exposing active sites and the synergistic coupling effect of CoP and Ni2P nanoparticles, the elaborated CoP/Ni2P/CC composite exhibits a robust catalytic property. Among fabricated composites, the optimal CoP/Ni2P/CC-4 catalyst behaves an excellent HER performance at a wide pH range (overpotentials of 67, 71 and 95 mV to afford 10 mA cm?2 in 0.5 M H2SO4, 1 M KOH and 1 M PBS, respectively). The HER current density of this composite shows a negligible degradation after continuous test for 24 h. Charmingly, the HER process of this catalyst was innovatively applied to reduce graphene oxide, and thus exploiting the fabrication route of reduced graphene oxide (rGO). We are sure that this work will provide a firm guideline for the exploitation of pH-universal HER catalysts and the exploration of HER application.  相似文献   

16.
A NiFe alloy was designed on nickel foam (NF) as a precursor using cathodic electrodeposition. NiFe2O4–Ni3S2 nanorods (NRs) composite catalysts were prepared by Fe3+ impregnation and further hydrothermal sulfuration methods. NiFe2O4–Ni3S2 nanosheets (NSs) were also prepared by direct hydrothermal sulfuration of the NiFe alloy for comparison. Compared to the dense NS structure of the NiFe2O4–Ni3S2 NSs/NF, the NiFe2O4–Ni3S2 NRs/NF showed better oxygen evolution performance due to its unique weed-like NR array structure composed of additional oxygen evolution reaction (OER) active sites, with a strong electron interaction for Ni and Fe and the active sulfide synergistic effect with oxides. Therefore, Driving a current density of 10 mA cm?2 only requires an overpotential of 189 mV and the catalyst could provide 100 mA cm?2 continuously and be constant for more than 80 h in 1.0 M KOH. This experiment indicated that Fe3+ immersion had an indirect regulating effect on the morphological growth of the catalyst, which provided a novel concept for designing better OER catalysts.  相似文献   

17.
Efficient non-noble metal catalysts for the oxygen evolution reaction (OER) are particularly important in the practical applications of electrocatalytic water splitting (ECWS). Herein, based on a simple quasi chemical vapor deposition (Q-CVD) method, we fabricate a newly Ni3S2@3-D graphene free-standing electrode for efficient OER applications. The Ni3S2@3-D graphene integrates the advantageous features of 3-D graphene and Ni3S2 towards OER, such as more interfacial catalytic sites, pore-rich structure, N-doped structure and good electrical conductivity. Benefiting from the favorable features, the Ni3S2@3-D graphene (especially 900 °C sample) exhibits excellent OER performances in alkaline medium, which includes a low on-set potential (1.53 V), low overpotential of 305 mV at a current density of 10 mA cm−2, and a smaller Tafel slope (50 mV dec−1). This catalyst also shows ultrahigh stability after chronoamperometry response at 10 mA cm−2 for 48 h with 30% increase in the current density. The present work opens a new approach for the one-pot construction of hybrid materials between metal sulfide and graphene to increase the electrocatalytic activity of non-noble metal OER catalysts.  相似文献   

18.
Recent development on two-dimensional (2D) heterostructured graphene and MXene materials were explored for electrochemical water splitting hydrogen evolution reaction (HER) activity. The hybrid MXene/reduced graphene oxides as two-dimensional (2D) hybrid structures were prepared by facile hydrothermal techniques at 150 °C with MXene and RG hybrid layered composites. As-prepared electrocatalytic active materials have been confirmed through structural and surface morphological studies such as XRD, RAMAN, FT-IR and SEM analysis. The prepared 2D materials were carried out for HER activities due to attractive conductivity and mass transfer process. HER performance were tested from linear sweep voltammetry (LSV) cures. The prepared MX, RG and MX@RG hybrid electrocatalyst exhibited overpotential values as observed as 220 mV, 193 mV, 121 mV respectively at 10 mAcm?2 cathodic on set. MX@RG hybrid heterostructure exhibited enhanced HER action with lowest overpotential (η = 121 mV) and good H2 productions as an active future electrocatalyst for energy storage and conversion applications.  相似文献   

19.
Exploring low-cost, highly efficient, and sustainable non-precious electrocatalysts for electrolytic H2 generation is driving research for the sustainable green urban development. Herein, we present a simple synthetic approach, through a two-step process, to prepare the bifunctional electrode of Co3O4–C@FeMoP hybrid micro rods/nanosheets anchored on nickel foam (NF), in which the Co3O4–C microrods grown on NF surface are decorated by FeMoP nanosheet layers, which is directly grown through a simple hydrothermal followed by post-phosphorization processes. The obtained hybrid hierarchical Co3O4–C@FeMoP/NF shows a significant enhancement in the electrocatalytic activities of oxygen/hydrogen evolution reactions (OER/HER) in comparison to the individual Co3O4–C and FeMoP nanostructures, thanks to more heterointerface active sites provided by FeMoP nanostructures with three-dimensional (3-D) layered architectures. The Co3O4–C@FeMoP/NF catalyst exhibits a relatively small overpotential of 200 mV vs. RHE for OER to achieve 20 mA/cm2 and 123 mV vs RHE at 10 mA/cm2 for HER along with excellent durability in alkaline electrolytes. We demonstrate the bifunctional electrocatalytic electrode as the electrolyzer for the generation of H2 via water splitting at small applied voltage of 1.61 V to achieve 10 mA/cm2 and good stability for 24-h continuous running.  相似文献   

20.
Developing high-efficiency electrocatalysts viable for pH-universal hydrogen evolution reaction (HER) has attracted great interest because hydrogen is a promising renewable energy carrier for replacing fossil fuels. Herein, we present a facile strategy for fabricating ultra-fine Ru nanoparticles (NPs) decorated V2O3 on the carbon cloth substrates as efficient and stable pH-universal catalysts for HER. Benefiting from the metallic property and electronic conductivity of V2O3 matrix, the optimized hybrid (Ru/V2O3-CC) exhibits excellent HER activities in a wide pH range, achieving lower overpotentials of 184, 219, and 221 mV at 100 mA cm−2 in 0.5 M H2SO4, 1.0 M KOH and 1.0 M phosphate-buffered saline, respectively. Moreover, the electrode remains superior stability with negligible degradation after 5000 cyclic voltammetry scanning whether in acidic, alkaline or neutral media. Experimental results, combined with theoretical calculations, demonstrate that the interaction between Ru NPs and the support V2O3 induces the local electronic density diversity, allowing optimization of the adsorption energy of Ru towards hydrogen intermediate H1, thus favoring the HER process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号