首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, anode supported micro-tubular solid oxide fuel cells (SOFCs) are fabricated by extrusion method and the effects of powder size, thickness and sintering temperature of the anode functional layer (AFL) on the electrochemical performance is experimentally investigated. For this purpose, four different commercial NiO powders are tested as initial powder for the fabrication of the anode functional layer. The thickness of AFL is also considered by varying the number of coatings. After deciding the optimum initial NiO powder size used in AFL and AFL thickness, the effect of pre-sintering temperature is examined. The performance tests are performed at an operating temperature of 800 °C under hydrogen and air. The microstructures of the samples are also investigated by a scanning electron microscope. The best peak power density is obtained as ~0.5 W/cm2 from the cell having a single layer anode functional layer pre-sintered at 1250 °C prepared by NiO powders with 4 m2/g surface area.  相似文献   

2.
Anode-supported cone-shaped tubular solid oxide fuel cells (SOFCs) are successfully fabricated by a phase inversion method. During processing, the two opposite sides of each cone-shaped anode tube are in different conditions--one side is in contact with coagulant (the corresponding surface is named as “W-surface”), while the other is isolated from coagulate (I-surface). Single SOFCs are made with YSZ electrolyte membrane coated on either W-surface or I-surface. Compared to the cell with YSZ membrane on W-surface, the cell on I-surface exhibits better performance, giving a maximum power density of 350 mW cm−2 at 800 °C, using wet hydrogen as fuel and ambient air as oxidant. AC impedance test results are consistent with the performance. The sectional and surface structures of the SOFCs were examined by SEM and the relationship between SOFC performance and anode structure is analyzed. Structure of anodes fabricated at different phase inversion temperature is also investigated.  相似文献   

3.
Porous nickel–iron alloy supported solid oxide fuel cells (SOFCs) are fabricated through cost-effective ceramic process including tape casting, screen printing and co-sintering. The cell performance is characterized with humidified hydrogen as the fuel and flowing air as the oxidant. Effects of iron content on the cell performance and stability under redox and thermal cycle are investigated from the point of view of structural stability. Single cells supported by nickel and nickel–iron alloy (50 wt % iron) present relatively high discharge performance, and the maximum power density measured at 800 °C is 1.52 and 1.30 W cm?2 respectively. Nickel supported SOFC shows better thermal stability between 200 and 750 °C due to its dimensional stable substrate under thermal cycles. Posttest analysis shows that a dense iron oxide layer formed on the surface of the nickel-iron alloy during the early stage of oxidation, which prevents the further oxidation of the substrate as well as the functional anode layer, and thus, making nickel-iron supported SOFC exhibits better redox stability at 750 °C. Adding 0.5 wt % magnesium oxide into the nickel-iron alloy (50 wt% iron) can inhibit the metal sintering and reduce the linear shrinkage, making the single cell exhibit promising thermal stability.  相似文献   

4.
Automotive Solid oxide fuel cells (SOFCs) require improvements in mechanical robustness, power generation at low temperatures, and system compactness. To address these issues, we attempt to improve the internal reformation of metal-supported SOFCs (MS-SOFCs) via catalyst infiltration. After introducing nickel/gadolinium-doped ceria (Ni/GDC) nanoparticles, power densities of 1.16 Wcm−2 with hydrogen (3%H2O) and 0.85 Wcm−2 with methane (Steam-to-Carbon ratio, S/C = 1.0) are obtained at 600 °C, 0.7 V. This is the highest performance achieved in previous studies on MS-SOFCs. Internal reforming with various hydrocarbon is also demonstrated. In particular 0.64 Wcm−2 at 600 °C, 0.7 V is obtained when the fuel is iso-octane. We develop a numerical model to separately analyze reforming and electrochemical reaction. Catalyst infiltration dramatically increases the number of active sites for steam reforming. In addition, ruthenium/gadolinium-doped ceria (Ru/GDC) should be suitable as a catalyst metal at low temperatures because of the lower activation energy of steam reforming.  相似文献   

5.
This paper presents the operating results of micro tubular solid oxide fuel cells (MT-SOFCs) integrated with propane catalytic partial oxidation (CPOX) reformers. The cells combined with the propane CPOX reformers successfully survived 1000 continuous thermal cycles totaling 1922 h of operation with only a 0.47 mW power loss per cycle, as well as surviving 100 extreme thermal cycles with a maximum ramp rate of 1000 °C.min−1 without any power loss. This excellent thermal shock resistance is due to both the well matched coefficient of thermal expansion (CTE) among all of the cells’ layers as well as the homogenous anode structure present in all of the cells. Additionally, the cells operated on propane for more than 1500 continuous hours with an average degradation rate of 0.067 mW h−1 (0.58%/1000 h). This degradation was attributed to the sintering of the nickel in the anode, degradation of the current collection and the reformer. The fact that the cells showed no sign of delamination, cracking or coking after these tests also proves the successful integration of cell and CPOX reformer. Overall, the 3D printed MT-SOFCs with integrated CPOX reformers exhibited a breakthrough in terms of cell thermal cycling and long-term stability which will significantly advance the development of portable SOFCs systems.  相似文献   

6.
Hydrogen and methane are widely used as fuel for solid oxide fuel cells (SOFCs) and have been extensively researched. The usage of high-temperature SOFCs for mobile applications such as auxiliary power units will be a seminal field of application. The biggest advantage of currently used liquid fuels for combustion engines is their high volumetric energy density. Diesel can be used as fuel for SOFCs when it is reformed. In this study a CFD simulation model of a planar industrial-sized 100 × 100  mm2 SOFC fed with diesel reformat was examined. Its size and geometry as well as the fuel are suitable for future applications and therefore investigation is of special interest. The electrochemical and thermal performance was investigated and validated with in-house experimentally determined data. In order to identify the influence of radiative heat transfer, the Surface-to-Surface and the Discrete Ordinates Model were used for radiation modeling. A very high degree of consensus of simulated and experimentally designated data was reached for the entire temperature range and different fuel compositions. The created CFD model will be used as a base model for future simulations of carbon deposition on the cell's anode.  相似文献   

7.
Tape casting is conventionally used to prepare individual, relatively thick components (i.e., the anode or electrolyte supporting layer) for solid oxide fuel cells (SOFCs). In this research, a multilayer ceramic structure is prepared by sequentially tape casting ceramic slurries of different compositions onto a Mylar carrier followed by co-sintering at 1400 °C. The resulting half-cells contains a 300 μm thick NiO–yttria-stabilized zirconia (YSZ) anode support, a 20 μm NiO–YSZ anode functional layer, and an 8 μm YSZ electrolyte membrane. Complete SOFCs are obtained after applying a Gd0.1Ce0.9O2 (GDC) barrier layer and a Sm0.5Sr0.5CoO3 (SSC) -GDC cathode by using a wet-slurry spray method. The 50 mm × 50 mm SOFCs produce peak power densities of 337, 554, 772, and 923 mW/cm2 at 600, 650, 700, and 750 °C, respectively, on hydrogen fuel. A short stack including four 100 mm × 150 mm cells is assembled and tested. Each stack repeat unit (one cell and one interconnect) generates around 28.5 W of electrical power at a 300 mA/cm2 current density and 700 °C.  相似文献   

8.
Fabrication and characterization of tubular SOFCs under sub-millimeter (0.8 mm), bundles and stacks for low temperature operation were shown. The materials used in this study were Gd doped CeO2 (GDC) for electrolyte, NiO–GDC for anode and (La, Sr)(Co, Fe)O3 (LSCF)–GDC for cathode, respectively, and LSCF for supports of the tubular cells for bundle fabrication. After applying a sealing layer and current collector for each bundle of five micro tubular SOFCs, each bundle was stacked vertically, to build a four-storey cube-type stack with volume of about 0.8 cm3. The performance of the stack was shown to be 3.6 V OCV and 2 W maximum output power under 500 °C operating temperature. Preliminary quick start-up test was also conducted at the condition of 3 min start-up time from 150 to 400 °C for 5 times, and the results showed no degradation of the performance during the test.  相似文献   

9.
With the substantial improvement of the direct ammonia fuel cells performance, it has become the key to the further development of ammonia fuel cells to deeply understand the heat and mass transfer process inside the cell and to study the thermal impacts generation mechanism during cell operation. In this paper, a whole-cell model of single tubular direct ammonia cracking solid oxide fuel cell (SOFC) is established, and the generation mechanism of thermal impacts inside the cell is analysed in a data-driven method. The model includes the coupling of chemical-electrochemical reactions, local current, local temperature, mass flow and energy transfer inside the cell. It's identified from model simulations that the key to the thermal impact optimization of direct ammonia cracking SOFCs is to reduce the effect of the excessively fast and unbalanced ammonia cracking reaction on the cell. Both introducing the ammonia pre-reforming reaction and improving the activation energy of the ammonia cracking reaction can increase the overall average temperature of the cell and improve the temperature distribution. The 96% ammonia pre-reforming SOFCs can improve the extreme temperature difference in the anode from 37.71 K to 0.52 K at the operating temperature of 800 °C. Increasing activation energy of ammonia cracking reaction by 1.5 times can also make the ammonia cracking reaction rate distribution more uniform at the fuel channel, it can improve the extreme temperature difference in the anode to 4.49 K. This study can enrich the basic theory and research methods of thermal management of direct ammonia cracking SOFCs, and provide theoretical support for further improving cell performance.  相似文献   

10.
A Ni–Fe alloy layer in combination with a cermet layer composed of Ni and yttria-stabilized zirconia (YSZ) cermet layer was explored as an anode for solid oxide fuel cells (SOFCs). The cell supported on the dual-layered anode with straight pore paths showed a maximum power density of 1070 mW cm?2 at 800 °C, while 737 mW cm?2 for the one supported on the anode with tortuous pore paths. Electrochemical impedance measurement and distribution of relaxation time analysis revealed that the straight pore paths allowed fast gas phase transport thus mitigating the concentration polarization, and improved the accessibility of electrochemical reaction sites hence reducing the activation polarization. The cell supported on the Ni-YSZ/Ni–Fe dual-layered anode remained intact after 8 redox cycles, whereas the cell supported on the Ni-YSZ single layered anode failed after one redox cycle. It is concluded that the Ni-YSZ/Ni–Fe dual-layered composite explored in the present study is suitable for use as the supporting anode for SOFCs.  相似文献   

11.
The development of protective coatings for porous metal supports is critical for sufficient life time for the fuel cells by enabling improved oxidation resistance, reduced chromium evaporation, and increased conductivity of the protective oxide scale. The oxidation of coated and non-coated substrates has been compared, and shows that it is possible to increase the oxidation resistance at 600 °C in air by a factor of 10 and in wet hydrogen by a factor of 1000, after vacuum coating of the porous metal supports by infiltration of a lanthanum–manganese–cobalt solution and fast curing in air at 900 °C. Chromium evaporation is also lowered by a factor of 10 in air at 600 °C. The experiments on pre-coated porous metal supports verify that the coating is well suited to use for metal supported fuel cells prepared by a low temperature fabrication route (below 1100 °C). An alternative coating procedure for coating of the metal supports after co-sintering of the anode and electrolyte has also been investigated and is well suited for the high-temperature fabrication route. For the high temperature fabrication route, the oxidation tests at 600 °C for 500 h in air and 100 h in wet hydrogen showed that post-coating is better than the pre-coating approach since the cell sintering steps has a detrimental effect on the pre-coated samples.  相似文献   

12.
Enhancing the performance of anode supported honeycomb solid-oxide fuel cells via operating at higher temperatures is of great interest. However, working at a higher temperature leads to a significant rise in thermal stresses over the allowable limit. Thus, in the current study, functionally graded electrodes are considered to avoid cell failure due to higher thermal stresses. To assess the cell performance and thermal stress distribution, a theoretical investigation of a solid-oxide fuel cell with a honeycomb configuration using functionally graded electrode compositions is conducted through a comprehensive 3D model. The developed model includes the charge transport, mass and momentum transport, energy conservation, electrochemical reaction kinetics, and elastic stress. The model is numerically simulated and validated with the available experimental data. Results indicate that using functionally graded electrodes with grading index m = 1 significantly improves the fuel cell's performance, with an improvement in power density reaching around 60%. In addition, the most beneficial improvement is to reduce thermal stresses at elevated temperatures, for which the maximum value of equivalent stress is reduced to 85% less than the conventional electrode at a temperature of 1150 °C. Accordingly, the fuel cell's maximum power density can be obtained by operating at elevated temperatures with safe thermal stresses. These improvements are particularly attractive for applications requiring compact, reliable, and high-power devices based on fuel cell technology.  相似文献   

13.
Despite much progress achieved in the past decades in the process of advancing the low-temperature sintering technologies for Solid oxide fuel cells (SOFCs), such as via the structure design of the electrode materials, the practical application of low-temperature sintered SOFCs (with disqualified mechanical strength) remains challenging. In this work, first, we demonstrate that the appropriate amount of CuO as sintering aids can successfully reduce the co-firing temperature of conventional micron size NiO-YSZ (yttrium-stabilized zirconia (Y2O3)0.08–(ZrO2)0.92) anode from about 1400 °C to only 1100 °C. Second, the quantitative structure-activity relationship among the mechanical strength (low-temperature sintering ability) of anode cermets with the inclusion of CuO contents and the densification of YSZ electrolyte was synthetically evaluated, and the optimal Cu–NiO-YSZ anode composition demonstrates almost the equal mechanical strength when compared with the traditional NiO-YSZ anode (sintering at 1400 °C). At last, by comprehensive assessment, 8%Cu–52NiO-40YSZ (8%CuO–NiO-YSZ) shows excellent low-temperature sintering ability, high mechanical strength, optimal power output, and anti-carbon deposition when using as hydrocarbon-based anode for SOFCs.  相似文献   

14.
《Journal of power sources》2006,154(2):394-403
Electrical output behaviour obtained on solid oxide fuel cell stacks, based on planar anode supported cells (50 or 100 cm2 active area) and metallic interconnects, is reported. Stacks (1–12 cells) have been operated with cathode air and anode hydrogen flows between 750 and 800 °C operating temperature. At first polarisation, an activation phase (increase in power density) is typically observed, ascribed to the cathode but not clarified. Activation may extend over days or weeks. The materials are fairly resistant to thermal cycling. A 1-cell stack cycled five times in 4 days at heating/cooling rates of 100–300 K h−1, showed no accelerated degradation. In a 5-cell stack, open circuit voltage (OCV) of all cells remained constant after three full cycles (800–25 °C). Power output is little affected by air flow but markedly influenced by small fuel flow variation. Fuel utilisation reached 88% in one 5-cell stack test. Performance homogeneity between cells lay at ±4–8% for three different 5- or 6-cell stacks, but was poor for a 12-cell stack with respect to the border cells. Degradation of a 1-cell stack operated for 5500 h showed clear dependence on operating conditions (cell voltage, fuel conversion), believed to be related to anode reoxidation (Ni). A 6-cell stack (50 cm2 cells) delivering 100 Wel at 790 °C (1 kWel L−1 or 0.34 W cm−2) went through a fuel supply interruption and a thermal cycle, with one out of the six cells slightly underperforming after these events. This cell was eventually responsible (hot spot) for stack failure.  相似文献   

15.
Anode supported solid oxide fuel cells (SOFCs) have been extensively investigated for their ease of fabrication, robustness, and high electrochemical performance. SOFCs offer a greater flexibility in fuel choice, such as methane, ethanol or hydrocarbon fuels, which may be supplied directly on the anode. In this study, SOFCs with an additional Ni–Fe layer on a Ni–YSZ support are fabricated with process variables and characterized for a methane fuel application. The addition of Ni–Fe onto the anode supports exhibits an increase in performance when methane fuel is supplied. SOFC with a Ni–Fe layer, sintered at 1000 °C and fabricated using a 20 wt% pore former, exhibits the highest value of 0.94 A cm−2 and 0.85 A cm−2 at 0.8 V with hydrogen and methane fuel, respectively. An impedance analysis reveals that SOFCs with an additional Ni–Fe layer has a lower charge transfer resistance than SOFCs without Ni–Fe layer. To obtain the higher fuel cell performance with methane fuel, the porosity and sintering temperature of an additional Ni–Fe layer need to be optimized.  相似文献   

16.
Sample NiTiO3 (NTO) is prepared by the molten salts synthesis route as a potential anode material for solid oxide fuel cell (SOFC) applications. An additional sample impregnated with 5 mol%Ni (N-NTO) is also presented. Structural characterization reveal a pure NiTiO3 phase upon calcination at 850 °C and 1000 °C. Redox characterization by temperature programmed reduction tests indicate the transition from NiTiO3 to Ni/TiO2 at ca. 700 °C. Ni nanoparticles (ca. 26 nm) are exsolved in-situ from the structure after a reducing treatment at 850 °C. Catalytic activity tests for partial oxidation of methane performed in a fixed bed reactor reveal excellent values of activity and selectivity due to the highly dispersed Ni nanoparticles in the support surface. Time-on-stream behavior during 100 h operation in reaction conditions for sample N-NTO yield a stable CH4 conversion. Electrolyte supported symmetrical cells are prepared with both materials achieving excellent polarization resistance of 0.023 Ω cm2 in 7%H2/N2 atmosphere at 750 °C with sample N-NTO. The maximum power density achieved is of 273 mW cm−2 at 800 °C with a commercial Pt ink used as a reference cathode, indicating further improvement of the system can be achieved and positioning the N-NTO material as a promising SOFC anode material.  相似文献   

17.
YSZ/NiO-YSZ dual-layer hollow fibers with a thin YSZ top layer integrated on a porous NiO-YSZ (60:40 in weight) support, have been developed by one step method via a co-spinning-sintering process. Hydrogen reduction was performed to form YSZ/Ni-YSZ micro tube as the half solid oxide fuel cells (SOFCs). The microstructure of the dual-layer hollow fibers was tailored by adding ethanol as non-solvent in the initial mixture dopes for NiO-YSZ anode spinning. LSM cathode containing 20 wt%-YSZ was deposited on the electrolyte surface by dip-coating method to fabricate micro-tubular SOFCs. Experimental results indicate that the dual-layer hollow fibers from the anode dopes containing 15–20 wt% of ethanol possess the desired microstructure with optimized properties, such as the bending strength of 180 MPa, the porosity of 38–35% and the conductivity of 3000 S cm−1 at room temperature. The micro-tubular SOFCs fabricated from such hollow fibers show a maximum power density up to 485 mW cm−2 at 850 °C with 20 mL min−1 of H2 as fuel and 30 mL min−1 air as oxidant, respectively.  相似文献   

18.
Isothermal ageing and thermal cycling are performed on micro-tubular solid oxide fuel cells (SOFCs) in-order to understand degradation and failure mechanisms in micro-tubular SOFCs. For isothermal ageing, the effect of temperature gradients is investigated at 800 °C on two micro-tubular SOFC samples (1) 25 mm long and (2) 55 mm long. A temperature gradient is induced across the cells by passing 25% excess fuel for combustion at the cell outlet, thereby raising the temperature at this end to 950 °C. 25 mm long samples presented higher power density than the later ones and their rates of degradation were similar. Also, the effect of temperature gradients is investigated during the thermal cycling of micro-tubular SOFC to understand their contribution to electrochemical performance degradation. Two micro-tubes were characterized; one with optimum hydrogen flow rate and the other with 25% excess. No micro-cracking or de-lamination was observed in the micro-tube without a temperature gradient, whereas severe de-laminations and micro-cracking were observed when 25% excess hydrogen flow was used during thermal cycling.In conclusion, the effect of temperature gradients during isothermal ageing was marginal, and Ni sintering was found to dominate the degradation mechanism. On the other hand during thermal cycling, the temperature gradients were found to be contributive to degradation by opening micro-cracks and de-laminations.  相似文献   

19.
In this work, solid oxide fuel cells (SOFCs) based on different electrolytes, i.e., the yttria-stabilized zirconia (YSZ) and the samaria-doped ceria (SDC), were investigated to study their performances at low-temperature operation. The predicted performance of both SOFCs was validated with the experimental results. The verified models were implemented to study the impact of operating conditions, i.e., cell temperature, pressure, thicknesses of cathode, anode, and electrolyte, on their performances. The decrease in the operating temperature from intermediate range (800–900 °C) to low range (550–650 °C) has a considerable effect on the performance of the YSZ-based SOFC as conventional type, which dropped from 0.67–1.40 W/cm2 to 0.027–0.13 W/cm2. Under the low operating temperature range, the performance of SDC-based SOFC was superior to that of the YSZ-based SOFC, due to the lower ohmic loss. Nevertheless, the SDC-based SOFC has higher concentration overpotentials than the YSZ-based SOFC. The concentration overpotentials of the SDC-based SOFC can be reduced by the thinner anode and cathode thicknesses. In addition, the SDC-based SOFC at low operating temperature with the pressurized operation could significantly improve its power density, about 20% at 2 bar, which was close to that of YSZ-based SOFC at intermediate temperature of 800 °C.  相似文献   

20.
The combination of steam reforming and HT-PEMFC has been considered as a proper set up for the efficient hydrogen production. Recycling anode off-gas is energy-saving strategy, which leads to enhance the overall efficiency of the HT-PEMFC. Thus, the recycling effect of anode off-gas on steam-reforming performance needs to be further studied. This paper, therefore, investigated that the combustion of anode off-gas recycled impacts on the steam reformer, which consists of premixed-flame burner, steam reforming and water-gas shift reactors. The temperature rising of internal catalyst was affected by lower heating value of fuels when the distance between catalyst and burner is relatively short, while by the flow rate of fuels and the steam to carbon ratio when its distance is long. The concentration of carbon monoxide was the lowest at 180 °C of LTS temperature, while NG and AOG modes showed the highest thermal efficiency at LTS temperature of 220–300 °C and 270–350 °C, respectively. The optimum condition of thermal efficiency to maximize hydrogen production was determined by steam reforming rather than water gas shift reaction. It was confirmed that the condition to obtain the highest thermal efficiency is about 650 °C of steam reforming temperature, regardless of combustion fuel and carbon monoxide reduction. The difference of hydrogen yield between upper and lower values is up to 1.5 kW as electric energy with a variation of thermal efficiency. Hydrogen yield showed the linear proportion to the thermal efficiency of steam reformer, which needs to be further increased through proper thermal management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号