共查询到20条相似文献,搜索用时 0 毫秒
1.
S. Litvinenko S. Alekseev V. Lysenko A. Venturello F. Geobaldo L. Gulina G. Kuznetsov V. Tolstoy V. Skryshevsky E. Garrone D. Barbier 《International Journal of Hydrogen Energy》2010
Hydrogen reservoirs based on porous silicon (PS) nanostructures are considered. Silicon-based hydrogen tanks are believed to be applicable for portable device energy supply and compatible with micro-sources of energy of new generation. Stain etching of silicon powder to produce PS is studied as a technology alternative to conventional electrochemical etching and application of the PS powder for hydrogen production is also described. Size selection of initial Si micro-particles constituting the powders was carried out by sedimentation technique. Hydrogen content in PS was investigated by FTIR spectroscopy. Extraction of hydrogen in water environment in presence of small amount of NH3 as catalyst was shown to have advantages such as safety and tunability, additional production of hydrogen from water dissociation, and a possibility to characterize PS as a hydrogen source material in terms of hydrogen effective shell and crystalline core conception. 相似文献
2.
Ignacio López-Corral Jorge de Celis Alfredo Juan Beatriz Irigoyen 《International Journal of Hydrogen Energy》2012
Carbon nanotubes are considered important materials for hydrogen storage. Although the C–H interaction is very weak at room temperature, the incorporation of highly dispersed Pd nanoparticles increases the H2 adsorption on carbon surfaces. In this work we performed density functional theory studies of H2 adsorption on single walled carbon nanotubes (SWCNTs) with C-vacancies and a Pd decoration. We used the VASP and SIESTA codes. Our calculations show that Pd adsorption is favored on the C-vacancies of the (5,5) SWCNT, while H2 adsorption also occurs preferentially on C-defective sites. 相似文献
3.
This work presents a bonding study of hydrogen adsorption processes on palladium decorated carbon nanotubes by using the density functional theory (DFT). First, we considered simple decoration models involving single palladium atoms or palladium dimers, and then we analyzed the adsorption of several molecular and dissociated hydrogen coordination structures, including Kubas-type complexes. In all cases we computed the energy, bonding and electronic structure for the different nanotube-supported hydrogen–palladium systems. Our results show that Pd(H2) and Pd2(H2) complexes with relaxed but not dissociated H–H bonds are the most stable adsorbed systems. The role of s, p and d orbitals on the bonding mechanism for all adsorbates and substrates was also addressed. We found intermolecular donor–acceptor C–Pd and Pd–H delocalizations after adsorption. We also studied the palladium clustering effect on the hydrogen uptake based on Kubas-type bonding. 相似文献
4.
《International Journal of Hydrogen Energy》2019,44(5):2934-2942
A three dimensional (3D) dumbbell-like nanostructure composed by interconnected fullerenes and nanotubes with Lithium decoration and boron-doping (37Li@C139B31) has been proposed in virtue of density functional theory (DFT) and first-principles molecular dynamics (MD) simulations which shows excellent geometric and thermal stability. First-principles calculations are performed to investigate the hydrogen adsorption onto the 37Li@C139B31. The results indicate that B substitution can improve the metal binding and the average binding energy of 37 adsorbed Li atoms on the C139B31 (2.79 eV) is higher than the cohesive energy of bulk Li (1.63 eV) suppressing the clustering. Meanwhile, the H2 storage gravimetric density of 178H2@37Li@C139B31 reaches up to 15.9 wt% higher than the year 2020 target from the US department of energy (DOE). The average adsorption energy of H2 molecules falls in a desirable range of 0.18–0.27 eV. Moreover, grand canonical ensemble Monte Carlo (GCMC) simulations reveal that at room temperature the hydrogen gravimetric density (HGD) adsorbed on 37Li@C139B31 reaches up to 11.6 wt% at 100 bars higher than the DOE 2020 target. Our multiscale simulations indicate that our proposed nanostructure provides a promising medium for hydrogen storage. 相似文献
5.
M. Dragojlović I. Milanović A. Gradišek S. Kurko M. Mitrić A. Umićević J. Radaković K. Batalović 《International Journal of Hydrogen Energy》2021,46(24):13070-13081
LiAlH4 is a promising material for hydrogen storage, having the theoretical gravimetric density of 10.6 wt% H2. In order to decrease the temperature where hydrogen is released, we investigated the catalytic influence of Fe2O3 on LiAlH4 dehydrogenation, as a model case for understanding the effects transition oxide additives have in the catalysis process. Quick mechanochemical synthesis of LiAlH4 + 5 wt% Fe2O3 led to the significant decrease of the hydrogen desorption temperature, and desorption of over 7 wt%H2 in the temperature range 143–154 °C. Density functional theory (DFT)-based calculations with Tran-Blaha modified Becke-Johnson functional (TBmBJ) address the electronic structure of LiAlH4 and Li3AlH6. 57Fe Mössbauer study shows the change in the oxidational state of iron during hydrogen desorption, while the 1H NMR study reveals the presence of paramagnetic species that affect relaxation. The electron transfer from hydrides is discussed as the proposed mechanism of destabilization of LiAlH4 + 5 wt% Fe2O3. 相似文献
6.
《International Journal of Hydrogen Energy》2019,44(16):8325-8340
Hydrogen storage capacity (HSC) of multilayer graphitic carbon nitride, d-g-C3N4 (d is interlayer spacing), and its palladium nanocomposite, d-Pd@g-C3N4, were investigated using multiscale computational techniques including quantum mechanics calculations and grand canonical Monte Carlo (GCMC) simulation. According to the results, the volumetric HSC of 8-g-C3N4 and 8-Pd@g-C3N4 can reach to DOE target of 30 gH2/L at 177 K, 5.7 MPa, and 177 K, 4.0 MPa, respectively. The gravimetric HSC of 10-g-C3N4 and 12-Pd@g-C3N4 meet the DOE target of 4.5 wt% at 150 K, 3.5 MPa, and 125 K, 4.0 MPa, respectively. The incorporation of Pd atoms enhances the delivery volumetric HSC of 6-, 8-, 10-, and 12-g-C3N4 by 49, 55, 129, and 146%, respectively at 177 K and 0.5 MPa. On the other hand, the incorporation of Pd atoms has a negative effect on the delivery gravimetric HSC of 6- and 8-g-C3N4 and positive effect for 10- and 12-g-C3N4. The estimated isostric heat, Qst, of adsorption is 5.5–8.5 kJ/mol. The maximum value of Qst for both nanoadsorbents belong to those with d = 8 Å. The structure of adsorbates and possibility of multilayer adsorption occurrence were also investigated using pair correlation functions and density profiles. 相似文献
7.
《International Journal of Hydrogen Energy》2019,44(29):15183-15192
Based on density functional theory (DFT) and first-principles molecular dynamics (MD),a new 3D hybrid Boron-Nitride-Carbon–interconnected frameworks (BNCIFs) consisting of organic linkers with Li decoration is created and optimized. Firstly, Li adsorption behaviors on several BNCxcomplexes are investigated and compared systematically. The results indicate C substitution of N atom in pure BN layer could improve the metal binding energy effectively. Secondly, the BNC layer (BNCNN) is chosen to model the frameworks of BNCIFs. The average binding energy of adsorbed Li atoms on BNCIFs is 3.6 eV which is much higher than the cohesive energy of bulk Li and avoids the Li clustering problem. Finally, we study the H2 adsorptions on the Li decorated BNCIFs by DFT. Every Li atom could adsorb four H2 molecules with an average binding energy of 0.24 eV. The corresponding gravimetric and volumetric storage capacities are 14.09 wt% and 126.2 g/L respectively overpassing the published 2020 DOE target. The excellent thermal stability of 160H2@40Li@BNCIFs is also proved by MD. This nanostructure could be served as a promising hydrogen storage medium at ambient conditions. 相似文献
8.
Zeynel Öztürk 《International Journal of Hydrogen Energy》2021,46(21):11804-11814
Hydrogen storage in porous materials by physical adsorption is being discussed to provide widespread usage of hydrogen energy systems. One of the recent hydrogen storage media that store hydrogen physically is Porous Graphene Frameworks (PGFs). In the study, three different PGFs were constructed by using Benzene-1,3,5-tricarboxylic acid (BTC), 4,40,400-Benzene-1,3,5-triyltribenzoate (BTB) and 4,40,400-(benzene-1,3,5triyl-tris (benzene-4,1-diyl))tribenzoate (BBC) organic linkers. The geometries of the structures were optimized and lithium atoms were dispersed inside. Then, thirty-three different structures were derived. Finally, hydrogen storage capacities and surface areas of each structure were computed. It was found out that 160 lithium dispersed Graphene-BBC structure has the highest hydrogen storage capacity with 4.26 wt % at 298K and 100 bars while 70 lithium dispersed graphene-BTB structure store 9.81 wt % hydrogen at 77K and 4 bars, and lithium free graphene-BBC structure store 20,68 wt % hydrogen at 77K and 100 bars. Lithium dispersion enabled extra surfaces for Graphene-BTB and Graphene-BBC structures to the limits. But surface area of Graphene-BTC structure decreased with lithium dispersion. The number of limits for Graphene-BTB and Graphene-BBC named structures were 70 and 200 lithium atoms, respectively. At the final it is pointed out that constructed novel PGFs could store comparable and relatively high hydrogen in various conditions. The existence of lithium atoms played a minor role to enhance hydrogen storage capacity but the limits are critically important to reach maximum capacity. 相似文献
9.
《International Journal of Hydrogen Energy》2020,45(35):17637-17648
A new-type 3D pillared graphene framework with hybrid fullerene and nanotube pillars (PGF-hFN) has been created depended on density functional theory (DFT) and first-principles molecular dynamics simulations (MD). It is proved to have excellent thermal structural stability. The average adsorption energy of Li is 2.77 eV much higher than the metal cohesive energy excluding lithium aggregation problem. From DFT calculations, for Li-decorated B-doped PGF-hFN, the hydrogen gravimetric density (HGD) is as high as 12.92 wt% and the according volumetric uptake is 96.4 g/L with an average adsorption energy of 0.195 eV per H2. Further grand canonical Monte Carlo (GCMC) simulations predict 7.2 wt% in excess HGD and 53.8 g/L in excess volumetric hydrogen density at near ambient temperature (233 K) and 100 bars with the ideal adsorption enthalpy which have exceeded the 2020 the U.S. Department of Energy (DOE) ultimate target for mobile applications. Our multiscale theoretical simulations indicate this new pillared structure should be a promising carrier accessible for sorption of hydrogen molecules. 相似文献
10.
《International Journal of Hydrogen Energy》2019,44(53):28521-28526
To date, hydrogen generation and storage are two separated processes. We report on a new concept where photocatalytically generated hydrogen is simultaneously stored in-situ within the material photo-generating hydrogen. To this aim, we successfully synthesised a “forest” of vertically aligned TiO2 nanotubes decorated with Pd nanoparticles acting as the hydrogen store. Upon illumination of TiO2, hydrogen was effectively generated and full storage of hydrogen within the Pd nanostructures was achieved within 100 min. This result demonstrates new avenues on the possibility of designing hybrid nanostructures for the effective use of hydrogen as an energy vector. 相似文献
11.
《International Journal of Hydrogen Energy》2022,47(13):8338-8347
It is well known that the development of dual-purpose materials is more significant and valuable than single-use materials due to the diversity of their use purposes. Based on density functional theory (DFT), the hydrogen evolution/hydrogen storage characteristics of two-dimensional (2D) B7P2 monolayer are systematically studied in this paper, focusing on the key word of clean energy-“hydrogen”. The results show that the B7P2 monolayer can be used as a stable metal-free decorated catalyst for hydrogen evolution reaction (HER), which is renewable and environmentally friendly. The calculated Gibbs free energy (ΔGH1) is 0.06 eV, which is comparable or even better than that of Pt catalyst (ΔGH1 = ?0.09 eV). In addition, we also found that the increase of hydrogen coverage and strain driving (?2%–2%) did not further enhance the HER activity of B7P2 monolayer, showing a poor ΔGH1. In the aspect of hydrogen storage, we have investigated the hydrogen storage performances of alkali-metal (Li, Na and K) doped B7P2. It is found that in the fully loaded case, B7P2Li6 is a promising hydrogen storage material with a 7.5 wt% H2 content and 0.15 eV/H2 average hydrogen adsorption energy (Eave). Moreover, ab initio molecular dynamics (AIMD) calculations show that there is no dynamic barrier for H2 desorption of Li-decorated B7P2 monolayer. In conclusion, our results indicate that the B7P2 monolayer is not only an excellent catalyst for HER, but also a promising hydrogen storage medium. 相似文献
12.
《International Journal of Hydrogen Energy》2021,46(67):33486-33495
Two-dimensional (2D) B2O monolayer is considered as a potential hydrogen storage material owing to its lower mass density and high surface-to-volume ratio. The binding between H2 molecules and B2O monolayer proceeds through physisorption and the interaction is very weak, it is important to improve it through appropriate materials design. In this work, based on density functional theory (DFT) calculations, we have investigated the hydrogen storage properties of Lithium (Li) functionalized B2O monolayer. The B2O monolayer decorated by Li atoms can effectively improve the hydrogen storage capacity. It is found that each Li atom on B2O monolayer can adsorb up to four H2 molecules with a desirable average adsorption energy (Eave) of 0.18 eV/H2. In the case of fully loaded, forming B32O16Li9H72 compound, the hydrogen storage density is up to 9.8 wt%. Additionally, ab initio molecular dynamics (AIMD) calculations results show that Li-decorated B2O monolayer has good reversible adsorption performance for H2 molecules. Furthermore, the Bader charge and density of states (DOS) analysis demonstrate H2 molecules are physically absorbed on the Li atoms via the electrostatic interactions. This study suggests that Li-decorated B2O monolayer can be a promising hydrogen storage material. 相似文献
13.
《International Journal of Hydrogen Energy》2022,47(12):7861-7869
In this article, we have explored the hydrogen (H2) storage capacity of the Li doped B clusters LinB14(n = 1–5) using density functional theory (DFT). The geometrical and Bader's topological parameters indicate that the clusters adsorb H2 in the molecular form. The Li atom polarises the H2 molecules for their effective adsorption on the clusters. The LinB14 (n = 1–5) clusters are found to be stable even after H2 adsorption at room temperature. The average adsorption energy is found to be in the range of 0.12–0.14 eV/H2. Among the various clusters, the Li5B14 shows maximum H2 storage capacity (13.89 wt%) at room temperature. The ADMP simulation reveals that within few femtoseconds (fs), the H2 molecules begin to move away from the clusters and within 400 fs most of the H2 molecules moved away from the clusters. 相似文献
14.
D.G. Narehood S. Kishore H. Goto J.H. Adair J.A. Nelson H.R. Gutiérrez P.C. Eklund 《International Journal of Hydrogen Energy》2009
In situ X-ray diffraction (XRD) and gravimetric hydrogen uptake measurements of d ∼ 2–3 nm spherical PdHx particles have been studied in the temperature and pressure range of 323 < T < 428 K and 0 < P < 10 bar. The Pd particles were protected from sintering with a hydrogen-permeable carbon coating. While only containing ∼300–1000 atoms, the Pd particles were found to exhibit the same fcc structure and lattice constant as the bulk. Our isothermal studies show that, with increasing x, these highly crystalline PdHx nanoparticles also exhibit a complete transformation from the dilute α solid solution phase to the more concentrated β hydride phase. However, we observed that the character of the α–β phase transition in these nanoparticles is very different from that in the bulk. Indeed, the hydrogen uptake isotherm exhibits a noticeable positive slope in the α + β co-existence region. Furthermore, we also observed a noticeable narrowing of the α + β co-existence region (δx) in the nanoparticles. Also, a significant suppression of the critical temperature Tc for the phase boundary was observed: Tc(nano) ≈ 430 K while Tc(bulk) ≈ 570 K. These results signal a significant change in the thermodynamic behavior of very small hydride nanoparticles that may be common to many other nano-scale metal hydride systems as well. 相似文献
15.
LiAlH4 is regarded as a potential material for solid-state hydrogen storage because of its high hydrogen content (10.5 wt%). However, its high decomposition temperature, slow dehydrogenation kinetics and irreversibility under moderate condition hamper its wider applications. Mechanical milling treatment and doping with a catalyst or additive has drawn significant ways to improve hydrogen storage properties of LiAlH4. Microstructure or nanostructure materials were developed by using a ball milling technique and doping with various types of catalysts or additives which had dramatically improved the efficiency of LiAlH4. However, the state-of-the-art technologies is still far from meeting the expected goal for the applications. In this paper, the overview of the recent advances in catalyst-enhanced LiAlH4 for solid-state hydrogen storage is detailed. The remaining challenges and the future prospect of LiAlH4–catalyst system is also discussed. This paper is the first systematic review that focuses on catalyst-enhanced LiAlH4 for solid-state hydrogen storage. 相似文献
16.
《International Journal of Hydrogen Energy》2019,44(20):9994-10002
In this study, nanoporous silicon (PS) layers have been elaborated and used for hydrogen storage. The effect of the thickness, porosity and specific surface area of porous silicon on the amount of hydrogen chemically bound to the nanoporous silicon structures is studied by Infrared spectroscopy (FTIR), cyclic voltammetry (CV), contact angle and capacitance –voltage measurements. The electrochemical characterization and hydrogen storage were carried out in a three-electrode cell, using sulfuric acid 3 M H2SO4 as electrolyte by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge. The results indicate the presence of two oxidation peaks at 0.2 V and 0.4 V on the anodic side corresponding to hydrogen desorption and a reduction peak at −0.2 V on the cathodic side corresponding to the sorption of hydrogen. Moreover, the EIS studies performed on PS electrode in 3 M H2SO4 show that the hodograph contains a semicircle at high frequency region and a line in the lower frequency zone. An equivalent circuit has been proposed; the values of the equivalent circuit elements corresponding to the experimental impedance spectra have been determined and discussed. Finally, the highest hydrogen storage in PS was 86 mAh/g. This storage capacity decreases by only 7% of the initial capacity value, after 40 cycles. 相似文献
17.
Henrietta W. Langmi 《Journal of power sources》2010,195(7):2003-2007
Mixtures of Li2O/Li3N and Na2O/Li3N have been investigated for hydrogen storage. When Li3N is doped with ca. 5 mol% Li2O and annealed, both binary compounds exist as separate phases as evident from powder X-ray diffraction. Li2O acts as a spectator in the hydrogen storage reactions and there is no evidence of enhanced Li+ or H+ mobility. Na2O (5 mol%) interacts more strongly with Li3N, leading to the generation of an unidentified phase, which also appears to play no part in the hydrogen storage reactions of the composite system. We conclude that addition of these levels of Li2O or Na2O to Li3N followed by annealing does not improve the hydrogen storage properties of Li3N. 相似文献
18.
《International Journal of Hydrogen Energy》2022,47(99):41878-41890
Hydrogen is being considered a ‘fuel of the future,’ a viable alternative to fossil fuels in fuel cell vehicles. Using Density Functional Theory simulations, reversible, onboard hydrogen storage in Sc-decorated triazine-based graphitic carbon nitride (g-C3N4) has been explored. Sc atom binds strongly on the g-C3N4 structure with a binding energy of ?7.13 eV. Each Sc atom can reversibly bind 7 molecules of hydrogen, giving a net gravimetric storage capacity of 8.55 wt%, an average binding energy of ?0.394 eV per H2, and a corresponding desorption temperature of 458.28 K, fulfilling the criteria prescribed by the US Department of Energy. The issue of transition metal clustering has been investigated by computing the diffusion energy barrier (2.79 eV), which may be large enough to hinder the clustering tendencies. The structural integrity of Sc-g-C3N4 has been verified through ab-initio Molecular Dynamics simulations. The interaction mechanism of Sc over g-C3N4 and H2 over Sc-g-C3N4 has been explored using density of states and charge transfer analysis. A flow of charge from valence 3d orbitals of Sc towards vacant orbitals of g-C3N4 during the binding of Sc over g-C3N4 is observed. The binding of H2 on Sc-g-C3N4 may be via Kubas type of interactions which is stronger than physisorption due to net charge gain by H 1s orbital from Sc 3d orbital. Our systematic investigations indicate that Sc-decorated g-C3N4 may be a high-performance material for reversible hydrogen storage applications. 相似文献
19.
Peng Gao Ji-wen Li Jie Zhang Guangzhao Wang 《International Journal of Hydrogen Energy》2021,46(42):21739-21747
Density functional theory (DFT) computational studies were conducted to explore the hydrogen storage performance of a monolayer material that is built on the base of carbon nitride (g-C3N4, heptazine structure) with decoration by magnesium (Mg). We found that a 2 × 2 supercell can bind with four Mg atoms. The electronic charges of Mg atoms were transferred to the g-C3N4 monolayer, and thus a partial electropositivity on each adsorbed Mg atom was formed, indicating a potential improvement in conductivity. This subsequently causes the hydrogen molecules’ polarization, so that these hydrogen molecules can be efficiently adsorbed via both van der Waals and electrostatic interactions. To note, the configurations of the adsorbed hydrogen molecules were also elucidated, and we found that most adsorbed hydrogen molecules tend to be vertical to the sheet plane. Such a phenomenon is due to the electronic potential distribution. In average, each adsorbed Mg atom can adsorb 1–9 hydrogen molecules with adsorption energies that are ranged from ?0.25 eV to ?0.1 eV. Moreover, we realised that the nitrogen atom can also serve as an active site for hydrogen adsorption. The hydrogen storage capacity of this Mg-decorated g-C3N4 is close to 7.96 wt %, which is much higher than the target value of 5.5 wt % proposed by the U.S. department of energy (DOE) in 2020 [1]. The finding in this study indicates a promising carbon-based material for energy storage, and in the future, we hope to develop more advanced materials along this direction. 相似文献
20.
The goal of efficient storage of molecular hydrogen at room temperature and reasonable pressures has not been achieved so far. This requires a model system with sufficient H2 binding energy and low H2 internal pressure. Here, via theoretical investigations, we show that the two requirements can be satisfied simultaneously by using a π-stacked organic semiconductor as the physisorption substrate in the presence of an electric field. 相似文献