首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present study, the effects of spraying conditions on reforming performance were investigated experimentally. Kerosene was used as the liquid fuel for reforming and sprayed by a twin fluid nozzle to facilitate uniform mixing with air and water (steam) at the downstream. The separate effects of the mean drop size of the fuel, the position of the catalytic bed and the air flow rate on the reforming efficiency were analyzed, and the reasons for the results were discussed by examining the temperature distribution inside the reformer and also through visualization of the catalytic bed during the reforming process. The overall reforming efficiency was significantly improved by spraying the fuel because the mixing between the reactants was enhanced. When the distance from the nozzle to the catalytic bed became closer, higher reforming performance was achieved with larger fuel drops due to the more rapid penetration into the catalytic bed with larger momentum. With a larger amount of air supply to the system, fuel reformation was promoted by the high reaction temperature. On the other hand, with the longer distance between the nozzle and the catalytic bed, the poor mixing between the fuel and other reactants (due to the side-wall collision of fuel drops and possible formation of liquid film along the wall) predominated over other effects, and the drop size effect was not accordingly observed.  相似文献   

2.
The development and evaluation of a reactor based on microchannel technology for the reforming of diesel fuel is reported. The reactor itself was based on an integrated reformer/burner heat exchange reactor concept. 38 h of diesel reforming was performed at temperatures above 750 °C and at various S/C ratios, down to a minimum of 3.17, up to an electrical power equivalent of 5 kW. Over 98% total diesel conversion was observed at all times over the testing period. Variation of experimental parameters such as O/C and S/C ratios are critical for optimum operation of the reformer.  相似文献   

3.
This study investigated the plasma reforming process for diesel focusing on the relative ratio of oxygen to fuel. Excess O2 in the partial oxidation process is known to increase the combustion portion, resulting in a decreased yield of H2 and CO. However, in this parametric investigation, there was no apparent decrease in the H2 and CO selectivity. Adding O2 did not increase the portion of combustion in the overall reaction. Rather, an excess O2 supply from partial oxidation stoichiometry resulted in an increase in CO2 selectivity without a reduction in CO selectivity. Heavy hydrocarbon species were identified as a source of CO2 in excess O2 conditions due to preferential oxidative cracking. The additional oxidation of C1–C4 species by excess O2 provided a minor contribution to CO2. Excess O2 affects soot generation characteristics by suppressing the agglomeration of soot particles, resulting in smaller particle generation. However, the oxidation of soot particles does not provide a major contribution to increasing the CO2 selectivity. The results show that in a real reforming process, controlling the O2 supply does not have a strong effect on the process selectivity of hydrogen.  相似文献   

4.
In this paper we show, for the first time, the feasibility of ammonia exhaust gas reforming as a strategy for hydrogen production used in transportation. The application of the reforming process and the impact of the product on diesel combustion and emissions were evaluated. The research was started with an initial study of ammonia autothermal reforming (NH3 – ATR) that combined selective oxidation of ammonia (into nitrogen and water) and ammonia thermal decomposition over a ruthenium catalyst using air as the oxygen source. The air was later replaced by real diesel engine exhaust gas to provide the oxygen needed for the exothermic reactions to raise the temperature and promote the NH3 decomposition. The main parameters varied in the reforming experiments are O2/NH3 ratios, NH3 concentration in feed gas and gas – hourly – space – velocity (GHSV). The O2/NH3 ratio and NH3 concentration were the key factors that dominated both the hydrogen production and the reforming process efficiencies: by applying an O2/NH3 ratio ranged from 0.04 to 0.175, 2.5–3.2 l/min of gaseous H2 production was achieved using a fixed NH3 feed flow of 3 l/min. The reforming reactor products at different concentrations (H2 and unconverted NH3) were then added into a diesel engine intake. The addition of considerably small amount of carbon – free reformate, i.e. represented by 5% of primary diesel replacement, reduced quite effectively the engine carbon emissions including CO2, CO and total hydrocarbons.  相似文献   

5.
This paper focuses on the optimization of Jet-A fuel reforming for use with solid-oxide fuel cells in aerospace applications. Because of the specialized operating conditions and reforming requirements, a broad range of reforming inlet conditions need to be considered. Both equilibrium calculations for reforming of a Jet-A surrogate and zero-dimensional modeling with detailed chemistry for reforming of a kerosene surrogate are performed over a wide range of conditions with varying inlet temperature, operating pressure, steam-to-carbon ratio, and oxygen-to-carbon ratio. While equilibrium calculations provide some insight into the efficiency of the final reformer, the kinetics modeling can account for the finite residence time of the gas within the reformer. Calculations using finite-rate gas-phase chemistry indicate that the most efficient mode of reforming is achieved using a short-contact partial oxidation reactor operating with minimal water addition. Certain factors to consider for the development of a future catalytic reformer, such as local hot-spots and coke deposition on the catalyst, are also discussed.  相似文献   

6.
This paper presents an overview on solar-thermal decomposition of fossil fuels as a viable option for transition path from today's permanent dependency on fossil fuels to tomorrow's solar fuels via solar thermochemical technology. The paper focuses on the thermochemical hydrogen generation technologies from concentrated solar energy and gives an assessment of the recent advancements in the hydrogen producing solar reactors. The advantages and obstacles of hydrogen generation via solar cracking and solar reforming are presented along with some discussions on the feasibility of industrial scaling of these technologies. Solar cracking and solar reforming processes are discussed as promising hybrid solar/fossil technologies to take considerable share during transition from fossil fuel dependency to clean energy based sustainability.  相似文献   

7.
Liquid hydrocarbons (LC) are considered as fuel cells feed and, more particularly, as solid oxide fuel cell feed. Cost-effective LC-reforming catalysts are critically needed for the successful commercialization of such technologies. An alternative to noble metal catalysts, proposed by the authors in a previous publication, has been proven efficient for diesel steam reforming (SR). Nickel, less expensive and more readily available than noble metals, was used in a form that prevents deactivation. The catalyst formulation is a Ni-alumina spinel (NiAl2O4) supported on alumina (Al2O3) and yttria-stabilized zirconia (YSZ).SR of commercial diesel was undertaken for more than 15 h at high gas hourly space velocities and steam-to-carbon ratios lower than 2. Constant diesel conversion and high hydrogen concentrations were obtained. Ni catalyst characterization revealed no detectable amounts of carbon on the spinel catalyst surface Ni. The effect of catalyst composition (Ni concentration and YSZ presence) was studied to understand and optimize the developed catalyst. Two phenomena were found to be influenced by relative catalyst composition: water-gas-shift vs reforming reaction extent, and concentration of light hydrocarbons in products.  相似文献   

8.
In this paper, a method is proposed for reforming fuels to hydrogen using solar energy at distributed locations (industrial sites, residential and commercial buildings fed with natural gas, remote settlements supplied by propane etc). In order to harness solar energy a solar concentrator is used to generate high temperature heat to reform fuels to hydrogen. A typical fuel such as natural gas, propane, methanol, or an atypical fuel such as ammonia or urea can be transported to distributed locations via gas networks or other means. The thermodynamic analysis of the process shows the general reformation reactions for NH3, CH4 and C3H8 as the input fuel by comparison through operational fuel cost and CO2 mitigation indices. Through a cost analysis, cost reduction indices show fuel-usage cost reductions of 10.5%, 22.1%, and 22.2% respectively for the reformation of ammonia, methane, and propane. CO2 mitigation indices show fuel-usage CO2 mitigations of 22.1% and 22.3% for methane and propane respectively, where ammonia reformation eliminates CO2 emission at the fuel-usage stage. The option of reforming ammonia is examined in further detail as proposed cycles for solar energy capture are considered. A mismatch of specific heats from the solar dish is observed between incoming and outgoing streams, allowing a power production system to be included for a more complete energy capture. Further investigation revealed the most advantageous system with a direct expansion turbine being considered rather than an external power cycle such as Brayton or Rankine type cycles. Also, an energy efficiency of approximately 93% is achievable within the reformation cycle.  相似文献   

9.
A thermodynamic analysis of hydrogen production from propane by oxidative steam reforming (OSR) is performed with a Gibbs free energy minimization method. Addition of oxygen reduces the enthalpy of the system and facilitates the heat supply. Equilibrium compositions of OSR as a function of temperature (300, 500, 700 and 900 °C), H2O/C3H8 ratio (1.0–20.0) and O2/C3H8 ratio (0.0–2.0) under oxidative and thermo-neutral (TN) conditions are evaluated. The results for oxidative conditions demonstrate that at 700 °C with H2O/C3H8 ratios above 7.0 and/or O2/C3H8 ratios higher than 1.3 are beneficial for hydrogen production which facilitates superior hydrogen yield, i.e. close to 9.0 mol/mol propane, with coke and methane formation reactions being suppressed effectively. For TN condition, autothermal temperature and equilibrium composition have a stronger dependence on O2/C3H8 ratio than on H2O/C3H8 ratio. Further calculations show that the condition at 700 °C with an appropriate H2O/C3H8 ratio between 7.0 and 13.0 is favorable for achieving a high hydrogen yield and a low carbon monoxide yield. Therefore, a favorable operational range is proposed to ensure the most optimized product yield.  相似文献   

10.
Solid-oxide fuel cells (SOFC) constitute a particularly attractive technology for sustainable, combined heat and power generation, both at domestic and district levels. The elevated operating temperature of SOFC systems, allows the utilization of a wide spectrum of conventional and alternative fuels, through suitable reforming processes. The high temperatures and fuel rich conditions prevailing in SOFC reformers, enhance syngas yield and reforming efficiency but may give rise to unwanted effects, such as ignition, soot and coke formation and deposition. The above phenomena cannot be described via thermodynamic considerations and can only be effectively tackled through a detailed chemical kinetic approach. The present study provides a comparative assessment of SOFC reformer operation on conventional and alternative hydrocarbon fuels in terms of syngas yield, thermal efficiency and pollutants formation. In particular, the reforming of methane, a typical biogas (comprising of 60% CH4 and 40% CO2), methanol and ethanol is numerically assessed by utilizing a recently developed and validated comprehensive detailed kinetic mechanism for C1–C6 hydrocarbons, augmented with a PAH model. Chemical aspects of the fuel reforming process are investigated through rate-of-production path and sensitivity analyses. The study supports design guidelines aiming towards identification of optimum operating conditions, for specific applications and fuels. The analysis reveals that the extent of coupling between syngas formation and molecular growth processes is strongly dependent on fuel and operating conditions choice and identifies windows of efficient operation, for each case.  相似文献   

11.
This article introduces the energetic macroscopic representation (EMR) as approach for the dynamic modeling of a diesel fuel processing unit. The EMR is the first step toward model-based control structure development. The autothermal fuel processing system containing: heat exchanger, reformer, desulfurization, water gas shift, preferential oxidation and condensation is divided into a multitude simple subblocks. Each subblock describes an elementary step of the fuel conversion, several of these blocks may occur in a single module. Calculations are carried out using two basic principles: mass and energy balances. For model-based control development, it is imperative that the model represents dynamic behavior, therefore temperature and pressure dynamics are taken into account in the model. It is shown that the model is capable to predict the stationary behavior of the entire fuel processing unit correctly by comparison with given data. Predictions regarding reformer heat up, temperature and pressure dynamics are also provided.  相似文献   

12.
The presence of steam in the reactant gas of a catalytic fuel reformer decreases the formation of carbon, minimizing catalyst deactivation. However, the operation of the reformer without supplemental water reduces the size, weight, cost, and overall complexity of the system. The work presented here examines experimentally two options for adding steam to the reformer inlet: (I) recycle of a simulated fuel cell anode exit gas (comprised of mainly CO2, H2O, and N2 and some H2 and CO) and (II) recycle of the reformate from the reformer exit back to the reformer inlet (mainly comprised of H2, CO, and N2 and some H2O and CO2). As expected, anode gas recycle reduced the carbon formation and increased the hydrogen concentration in the reformate. However, reformer recycle was not as effective due principally to the lower water content in the reformate compared to the anode gas. In fact, reformate recycle showed slightly increased carbon formation compared to no recycle. In an attempt to understand the effects of individual gases in these recycle streams (H2, CO, CO2, N2, and H2O), individual gas species were independently introduced to the reformer feed.  相似文献   

13.
The paper addresses case studies of a low temperature and a high temperature industrial heat requirement being met using biomass gasification. The gasification system for these applications consists of an open top down draft reburn reactor lined with ceramic. Necessary cooling and cleaning systems are incorporated in the package to meet the end use requirements. The other elements included are the fuel conveyor, water treatment plant for recirculating the cooling water and adequate automation to start, shut down and control the operations of the gasifier system. Drying of marigold flower, a low temperature application is considered to replace diesel fuel in the range of 125–150 lh−1. Gas from the 500 kgh−1, gasifier system is piped into the producer gas burners fixed in the combustion chamber with the downstream process similar to the diesel burner. The high temperature application is for a heat treatment furnace in the temperature range of 873–1200 K. A 300 kgh−1 of biomass gasifier replaces 2000 l of diesel or LDO per day completely. The novelty of this package is the use of one gasifier to energize 16 burners in the 8 furnaces with different temperature requirements. The system operates over 140 h per week on a nearly nonstop mode and over 4000 h of operation replacing fossil fuel completely. The advantage of bioenergy package towards the economic and environmental considerations is presented.  相似文献   

14.
This article considers the scheme of fuel-consuming equipment with a thermochemical heat recuperation system by using ethanol steam reforming. The main concept of thermochemical recuperation (TCR) is the transformation of exhaust gases heat into chemical energy of a new synthetic fuel that has higher calorimetric properties such as low-heating value. Thermochemical recuperation can be considered as an on-board hydrogen production technology. To determine the efficiency of the thermochemical recuperation system, the thermodynamic analysis via Gibbs free energy minimization method was performed. The software Aspen-HYSYS was used for the thermodynamic analysis. The heat flows were calculated for a wide temperature range from 500 to 1000 K, for steam-to-ethanol ratio from 1 to 3, and for various pressures of 1, 5 and 10 bar. The results of the thermodynamic analysis were compared with the experimental results and the results of the thermodynamic analysis performed by other authors. All obtained results are in a good correlation. In the first law energy analysis was found that for a high steam-to-ethanol ratio (above 3), to perform thermochemical recuperation an external heat must be supplied to the TCR system. The heat deficit for steam-to-ethanol ratio 3 is from 1 to 2 MJ/kgEtOH in the temperature range from 500 to 1000 K.  相似文献   

15.
In this work, the results obtained for Ni-La-Al catalysts developed in our laboratory for biogas reforming are presented. The catalyst 5% Ni/5% La2O3-γ-Al2O3 has operated under kinetic control conditions for more than 40 h at 700 °C and feeding CH4/CO2 ratio 1/1, similar to the composition presented in biogas streams, being observed a stable behaviour.  相似文献   

16.
《Journal of power sources》2006,159(2):1283-1290
Diesel is one of the best hydrogen storage systems, because of its very high hydrogen volumetric density (100 kg H2 m−2) and gravimetric density (15% H2). In this study, several catalysts were selected for diesel reforming. Three experimental catalysts (Pt on gadolinium-doped ceria, Rh and Ru on the same support) and two commercial catalysts (FCR-HC14 and FCR-HC35, Süd-Chemie, Inc.) were used to reform diesel. The effects of operating conditions, such as temperature, O2/C16 and H2O/C16 on autothermal reforming (ATR) were investigated. In addition, by analyzing the concentrations of products and the temperature profiles along the catalyst bed, we studied the reaction characteristics for a better understanding of the ATR reaction. The fuel delivery and heat transfer between the front exothermic part and the rear endothermic part of the catalyst bed were found to be significant. In this study, the characteristic differences between a surrogate fuel (C16H34) and commercial grade diesel for the ATR were also examined.  相似文献   

17.
The reforming of diesel and diesel-like fuels plays a central role in the development of fuel cell systems for on-board power supplies. The vaporization of the fuel via a spray formation and the subsequent mixture with water vapor and air determine the quality of the reforming process, as is shown in this paper. By using a high quality nozzle residual hydrocarbons were below 25 ppmV during the reforming of standard diesel. Through the use of a fuel injector in pulsed operation, the load range was able to be increased from 1:1.67 to 1:6. Spray pattern analyses were conducted using a high-speed camera. The formation of the spray pattern lasted 1.5–2 ms. The testing of a fast-closing magnetic valve manufactured by GSR Ventiltechnik was carried out on the autothermal reformer (ATR) type AH2. It exist not any direct influence of the pulsed operation on hydrogen production.  相似文献   

18.
19.
Partial oxidation reforming of methane using a ceramic mixed ionic (oxygen)/electronic conducting dense ceramic membrane within a solid oxide fuel cell (SOFC) stack is potentially attractive as it allows direct operation on methane. We have analysed this process using a simple model of a counter-flow fuel system in which steam and carbon dioxide from the anode channel of the SOFC provide oxygen which passes through the mixed conducting membrane to partially oxidise methane on the other side of the membrane. The model shows that the concept is feasible and that the efficiency is the same as direct methane operation. The model also gives target values for the properties of the membrane. Tracer oxygen diffusion and exchange have been measured in the family of oxides La1−xSrxFe0.8Cr0.2O3−δ under reducing conditions. The data show that these materials have the mass transport characteristics and stability required for this concept.  相似文献   

20.
This work proposes a power generation system consisting of steam reformer and SOFC–H+ fuelled by different types of fuel, i.e., ethanol, glycerol and biogas. The performance analysis of integrated system is performed based on thermodynamic calculation through Aspen Plus simulator. The total of the Gibbs free energy minimization is used to determine product composition at equilibrium. The electrochemical model not only considers all voltage losses but also includes the effect of current leakage as a result from the electrolyte used. Considering the operating condition of steam reformer, it is found that the gas product contains the highest amount of hydrogen without the carbon formation when reformer is operated at 973 K with steam to carbon ratio of 1. In addition, the simulation results show that the SOFC–H+ operated at 973 K and 1 A/cm2 can provide a suitable compromise between system performances and exhaust gas composition. The use of glycerol reformate has the highest cell and system efficiencies and fuel utilization compared to the others. In addition, the integrated system fuelled by glycerol can release low CO amount whereas there is more heat provided to the surrounding. Therefore, it can be concluded that glycerol is suitable renewable fuel for SOFC–H+ integrated system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号