首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of orthohydrogen–parahydrogen concentration on the performance of a proton exchange membrane fuel cell is calculated and experimentally investigated. Gibbs free energy and reversible cell potential calculations predict that parahydrogen at room temperature produces a voltage 20 mV/cell higher than normal hydrogen and a 1.6% increase in efficiency over normal hydrogen. Experimental data based on a 1 kW proton exchange membrane fuel cell rapidly switched between normal and parahydrogen did not show a statistically significant difference in performance. Variations due to stack humidity and anode purging are found to dominate fuel cell output. The experimental results confirm that, as anticipated, parahydrogen concentration has a negligible impact on fuel cell performance for the majority of practical applications.  相似文献   

2.
For analyzing ejector's performance in the system, an ejector for a 10 kW polymer electrolyte membrane fuel cell (PEMFC) system was first designed, manufactured, and a 10 kW PEMFC system bench was built up. A proportional valve and PI pressure feedback control method were adopted to control the hydrogen supply and anode inlet pressure. During the test, performances between dead-ended anode (DEA) mode and ejector mode were compared. Ejector's performances in the system, i.e., volume flow recirculated ratio, difference pressure, dynamic responses of primary pressure, anode inlet pressure, and recirculated gas flow rate during the purge process and current variation condition, were investigated. The results show that pressure adjustment is accurate, continuous, and fast using the proportional valve and PI pressure feedback control method. The hydrogen consumption rate in the ejector mode can reduce from 5% to 10% compared with the rate in the DEA mode except for the stack current 5 A and 10 A conditions. For better water removal out of the anode channel in ejector mode, the maximum stack power increases from 5.11 kW (DEA mode) to 9.56 kW (ejector mode). Anode pressure surge caused by the purge valve switching enhances the ejector's recirculated performance significantly.  相似文献   

3.
The fuel delivery system using both an ejector and a blower for a PEM fuel cell stack is introduced as a fuel efficiency configuration because of the possibility of hydrogen recirculation dependent upon load states.A high pressure difference between the cathode and anode could potentially damage the thin polymer electrolyte membrane. Therefore, the hydrogen pressure imposed to the stack should follow any change of the cathode pressure. In addition, stoichiometric ratio of the hydrogen should be maintained at a constant to prevent a fuel starvation at abrupt load changes.Furthermore, liquid water in the anode gas flow channels should be purged out in time to prevent flooding in the channels and other layers. The purging control also reduces the impurities concentration in cells to improve the cell performance.We developed a set of control oriented dynamic models that include a anode model considering the two-phase phenomenon and system components The model is used to design and optimize a state feedback controller along with an observer that controls the fuel pressure and stoichiometric ratio, whereby purging processes are also considered. Finally, included is static and dynamic analysis with respect to tracking and rejection performance of the proposed control.  相似文献   

4.
Proton exchange membrane (PEM) fuel cells are widely considered as potential alternative energy candidates for internal combustion engines because of their low-temperature start, high energy density, and ease of scale up. However, their low hydrogen utilization rate is one of the main reasons for the limited commercial development. This study focuses on improving the hydrogen utilization rate of PEM fuel cells and system efficiency using optimal active recirculation system (ARS). An anode ARS and purging strategy are introduced to enhance the hydrogen utilization rate of PEM fuel cells. An ARS simulation model with purge strategy model is developed in a MATLAB/Simulink environment. A control-oriented dynamic model is developed to study the hydrogen recirculation system characteristics. The dynamic model is used as basis to propose a proportional integration differentiation controller to maintain the anode hydrogen concentration and increase the hydrogen utilization rate. Several experiments are performed using different purging strategies in conjunction with ARS. The hydrogen utilization rate is the highest when the purge time is 0.3 s and the purge period is 10 s. Simulation results show that the PEM fuel cells with an anode recirculation configuration exhibit a better performance than other configurations in terms of hydrogen utilization. Experimental results also demonstrate the feasibility of the proposed system, the performance of which is also superior to that of other hydrogen supply system.  相似文献   

5.
The hydrogen feeding sub-system is one of balance of plant (BOP) components necessary for the correct operation of a fuel cell system (FCS). In this paper the performance of a 6 kW PEM (Proton Exchange Membrane) FCS, able to work with two fuel feeding procedures (dead-end or flow-through), was experimentally evaluated with the aim to highlight the effect of the anode operation mode on stack efficiency and durability. The FCS operated at low reactant pressure (<50 kPa) and temperature (<330 K), without external humidification. The experiments were performed in both steady state and dynamic conditions. The performance of some cells in dead-end mode worsened during transient phases, while a more stable working was observed with fuel recirculation. This behavior evidenced the positive role of the flow-through procedure in controlling flooding phenomena, with the additional advantage to simplify the management issues related to hydrogen purge and air stoichiometric ratio. The flow-through modality resulted a useful way to optimize the stack efficiency and to reduce the risks of fast degradation due to reactant starvation during transient operative phases.  相似文献   

6.
The design and construction of a polymer electrolyte membrane fuel cell (PEMFC) system test bench suitable for investigating the effects of inert gas build-up and hydrogen quality on the performance of PEMFC systems is reported. Moreover, a new methodology to measure the inert gas crossover rate using an on-line hydrogen concentration sensor is introduced, and preliminary results are presented for an aged 8 kW PEMFC stack. The system test bench was also characterized using the same stack, whereupon its performance was observed to be close to commercial systems. The effect of inert gas accumulation and hence the quality of hydrogen on the performance of the system was studied by diluting hydrogen gas in the anode supply pipeline with nitrogen. During these experiments, uneven performance between cells was observed for the aged stack.  相似文献   

7.
In this study, a comprehensive performance analysis of a transportation system powered by a PEM fuel cell engine system is conducted thermodynamically both through energy and exergy approaches. This system includes system components such as a compressor, humidifiers, pressure regulator, cooling system and the fuel cell stack. The polarization curves are studied in the modeling and compared with the actual data taken from the literature works before proceeding to the performance modeling. The system performance is investigated through parametric studies on energy, exergy and work output values by changing operating temperature, operating pressure, membrane thickness, anode stoichiometry, cathode stoichiometry, humidity, reference temperature and reference pressure. The results show that the exergy efficiency increases with increase of temperature from 323 to 353 K by about 8%, pressure from 2.5 to 4 atm by about 5%, humidity from 97% to 80% by about 10%, and reference state temperature from 253 to 323 K by about 3%, respectively. In addition, the exergy efficiency increases with decrease of membrane thickness from 0.02 to 0.005 mm by about 9%, anode stoichiometry from 3 to 1.1 by about 1%, and cathode stoichiometry from 3 to 1.1 by about 35% respectively.  相似文献   

8.
The objective of this study was to simulate a proton-electrolyte membrane fuel cell (PEMFC) system, namely a PEMFC stack, an anode gas supply subsystem, an anode gas-recovery subsystem, a cathode gas supply subsystem, and a tail gas exhaustion subsystem. In addition, this paper presents an analysis of the efficiency of combined heat and power (CHP) systems. MATLAB and Simulink were employed for dynamic simulation and statistical analysis. The rates of active and the passive anode hydrogen recirculation were considered to elucidate the mechanism of hydrogen circulation. When recovery involved diverse recovery mechanisms, the recirculation rate was affected by the pressure at the hydrogen outlet of the PEMFC system. The greater the pressure was at that outlet, the higher the recovery rate was. In the hydrogen recovery system, when the temperature of the hydrogen supply end remained the same, increasing the temperature of the gas supply end increased the efficiency of the fuel cells; fixing the flow of the hydrogen supply end and increasing the temperature of the hydrogen supply end increased the efficiency of the PEMFC system. A calculation of the efficiency of the recovery system indicated that the thermal efficiency of the fuel cells exceeded 35%, the power generation efficiency exceeded 45%, and the efficiency of the CHP system exceeded 80%.  相似文献   

9.
建立了质子交换膜燃料电池(PEMFC)堆的热力学分析模型,研究了运行温度、气体分压和阳极流量等工作参数对燃料电池堆能量效率和火用效率的影响。结果表明:对气体加压,能提高热力学能效率和火用效率;温度升高时,系统性能无明显变化;阳极流量增加时,系统的热力学能效率和火用效率有所降低。  相似文献   

10.
《Journal of power sources》2006,156(2):512-519
A manual purge line was added into the exterior fuel exhaust stream of a Ballard PEM stack in a Nexa™ power module. With the addition of manual exhaust purge, high levels of inert gases were intentionally added to the anode feed without changing normal operational procedures. A new method of determining the critical minimum flow rate in the anode exhaust stream was given by an anode mass balance. This type of operation makes dual use of membranes in the MEAs as both gas purifiers and as solid electrolytes. The PEM stack was successfully operated with up to ca. 7% nitrogen or carbon dioxide in the absence of a palladium-based hydrogen separator at ca. 200 W power level. Nitrogen in the anode stream was concentrated from 7.5% to 91.6%. The system maintained a fuel efficiency of 99% at a manual purge rate of 2.22 ml s−1 and no auto purge. The fuel cell stack efficiency was 64% and the stack output efficiency was 75%. The overall system efficiency was 39%. After troublesome CO and H2S poisons were removed, a hydrocarbon reformate containing high levels of CO2 and H2O was further used in the Nexa™ stack. The size and complexity of the fuel processing system may be reduced at a specified power level by using this operational method.  相似文献   

11.
The cold start-up of a proton exchange membrane fuel cell is considered one of the main factors affecting the commercialization of fuel cell vehicles. In this study, an automotive fuel cell system was designed and tested for cold start-up at low temperatures. In the absence of PTC (Positive Temperature Coefficient) heating device, the stack was directly loaded to generate heat, which provided the cold start-up characteristics of system at low temperatures. Cold start-up process and purging control strategies were analyzed at −20 °C and −30 °C. It was found that the fuel cell system could produce 50% power in 25 s at −20 °C, the coolant temperature's heating rate was 0.78 °C/s, the coolant outlet temperature could reach 20 °C within 40 s and no apparent low voltage of single cell occurred. While, the cell close to the end plate had low cell voltage and reverse polar phenomena throughout the −30 °C cold start-up process. The heating rate of the coolant temperature was 0.44 °C/s, and the temperature of coolant outlet reached 20 °C within 90 s. The purging time ranged from 180 to 260 s according to the voltage drop value of stack and the ohmic resistance of stack was 360–470 mΩ after the high-volume air purging at different tests. After 30 cold start-up tests, the rated point performance of the stack declined by about 1%, and the consistency of cell voltages did not change significantly. Future work will focus on optimizing cold start-up strategy and speeding up purging time to minimize the performance impact of the cold start-up.  相似文献   

12.
赵金国  郭恒 《太阳能学报》2022,43(8):510-516
针对燃料电池堆再循环管线的再循环速率低的问题,提出用于燃料电池的氢气供应系统的循环控制方案,根据再循环管线中再循环的气体量精确估计由吹扫阀吹扫的氢体浓度,通过反馈每种气体的吹扫量,调节吹扫阀的开度,提升氢气利用率,并对该方案进行仿真分析。仿真结果表明,燃料电池阳极侧氢气利用率明显提升,最高可达92.733%,可提高燃料电池堆的耐久性。  相似文献   

13.
《Journal of power sources》2002,112(2):484-490
A 25-kW on-board methanol fuel processor has been developed. It consists of a methanol steam reformer, which converts methanol to hydrogen-rich gas mixture, and two metal membrane modules, which clean-up the gas mixture to high-purity hydrogen. It produces hydrogen at rates up to 25 N m3/h and the purity of the product hydrogen is over 99.9995% with a CO content of less than 1 ppm. In this fuel processor, the operating condition of the reformer and the metal membrane modules is nearly the same, so that operation is simple and the overall system construction is compact by eliminating the extensive temperature control of the intermediate gas streams. The recovery of hydrogen in the metal membrane units is maintained at 70–75% by the control of the pressure in the system, and the remaining 25–30% hydrogen is recycled to a catalytic combustion zone to supply heat for the methanol steam-reforming reaction. The thermal efficiency of the fuel processor is about 75% and the inlet air pressure is as low as 4 psi. The fuel processor is currently being integrated with 25-kW polymer electrolyte membrane fuel-cell (PEMFC) stack developed by the Hyundai Motor Company. The stack exhibits the same performance as those with pure hydrogen, which proves that the maximum power output as well as the minimum stack degradation is possible with this fuel processor. This fuel-cell ‘engine’ is to be installed in a hybrid passenger vehicle for road testing.  相似文献   

14.
The present work describes the experimental characterisation of a self-humidified 1 kW PEM fuel stack with 24 cells. A test bench was prepared and used to operate a PEMFC stack, and several parameters, such as the temperature, pressure, stoichiometry, current and voltage of each cell, were monitored with a LabView platform to obtain a complete thermal and electrical characterisation. The stack was operated in the constant resistance load regime, in dead-end mode (with periodic releases of hydrogen), with 30% relative humidity air and with temperature control from a cooling water circuit. The need to operate the stack for significant periods of time to achieve repeatable performance behaviour was observed, as was the advantage of using some recuperation techniques to improve electrical energy production. At low temperatures, the individual cell voltage measurements show lower values for the cells nearer to the cooling channels. The performance of the fuel cell stack decreases at operating temperatures above 40 °C. The stack showed the best performance and stability at 30 °C, with 300 mbar of hydrogen and 500 mbar of air pressure. The optimised hydrogen purge interval was 15 s, and the most favourable air stoichiometry was 2. Between 15 A and 32 A, the maximum electrical efficiency was 40%, and the thermal energy recovery in the cooling system was 40.8%; these values are based on the HHV. Electrical efficiencies above 40% were obtained between 10 and 55 A. The variation in the electrical efficiency is explained by the variation in the following independently measured factors: the fuel utilisation coefficient and the faradic and voltage efficiencies. The deviation between the product of the factors and the measured electrical efficiency is below 0.5%. Measurements were taken to identify all the losses from the fuel cell stack; namely, the energy balance to the cooling water, which is the main portion. The other quantified losses by order of importance are the purged hydrogen and the latent and sensible heat losses from the cathode exhaust. The heat losses to the environment were also estimated based on the measured stack surface temperature. The sum of all the losses and the electrical output has a closure error below 2% except at the highest and lowest loads.  相似文献   

15.
Automotive hydrogen polymer electrolyte membrane (PEM) fuel cell systems require periodic purges to remove nitrogen and water from the anode. Purging increases system performance by limiting anode hydrogen dilution, but reduces hydrogen utilization. State of the art fuel cell membrane electrode assemblies utilize thin ionomer membranes in an effort to increase performance and reduce cost. Thinner membranes also increase the required anode purge rates due to the increased transport of inert gases. A model was developed to examine the relationship between membrane thickness and vehicle range which takes into account anode purge rate. The model includes changes in efficiency and hydrogen utilization as a function of PEM thickness for a variety of operating conditions. The model predicts that an optimal membrane thickness which maximizes vehicle range exists, but this thickness is highly dependent on other system conditions. The results of this study can be extended to help optimize stack development and balance of plant design.  相似文献   

16.
The development of fuel cells is promised to enable the distributed generation of electricity in the near future. However, the infrastructure for production and distribution of hydrogen, the fuel of choice for fuel cells, is currently lacking. Efficient production of hydrogen from fuels that have existing infrastructure (e.g., natural gas, gasoline or LPG) would remove a major drawback to use fuel cells for distributed power generation.The aim of this paper is to define the better operating conditions of an innovative hydrogen generation system (the fuel processing system, FP) based on LPG steam reforming, equipped with a membrane shift reactor, and integrated with a PEMFC (Proton Exchange Membrane Fuel Cell) stack of 5 kWel.With respect to the conventional hydrogen generation systems, the use of membrane reactors (MRs) technology allows to increase the hydrogen generation and to simplify the FP-PEMFC plant, because the CO removal system, needed to reduce the CO content at levels required by the PEMFC, is avoided.Therefore, in order to identify the optimal operating conditions of the FP-PEMFC system, a sensitivity analysis on the fuel processing system has been carried out by varying the main operating parameters of both the reforming reactor and the membrane water gas shift reactor. The sensitivity analysis has been performed by means of a thermochemical model properly developed.Results show that the thermal efficiency of the fuel processing system is maximize (82.4%, referred to the HHV of fuels) at a reforming temperature of 800 °C, a reforming pressure of 8 bar, and an S/C molar ratio equal to 6. In the nominal operating condition of the PEMFC stack, the FP-PEMFC system efficiency is 36.1% (39.0% respect to the LHV).  相似文献   

17.
刘阳  陈奔 《太阳能学报》2023,44(2):260-268
建立基于尾氢再循环的车用PEMFC氢气系统的集总参数模型和质子交换膜燃料电池堆的二维CFD模型,瞬态模拟研究额定功率工况下尾氢排放对系统及电堆工作特性的影响。结果表明:排放过程中,阳极进气压力和进气流量等参数出现显著的波动现象,且波动幅度和波动时间与排放持续时间存在直接关系;电堆性能在排放过程中有所下降,排放结束后能迅速恢复到排放前的水平;阳极内部的水气分布在排放过程中得到明显改善。  相似文献   

18.
This work presents a fundamental theory and methods for understanding the gas composition dynamics in PEMFC anode fuel supply compartments operated dead-ended with recirculation. The methods are applied to measurement data obtained from a PEMFC system operated with a 1 kW short stack.We show how fuel utilisation and stack efficiency, two key factors determining how well a fuel supply system performs, are coupled through the anode gas composition.The developed methods allow determination of the anode fuel supply molar balance, giving access to the membrane crossover rates and the extent of recirculated gas exchanged to fresh fuel during a purge. A methane tracer gas is also evaluated for estimating fuel impurity enrichment ratios.The above theory and methods may be applied in modelling and experimental research activities related to defining hydrogen fuel quality standards, as well as for developing more efficient and robust PEMFC system operation strategies.  相似文献   

19.
20.
Cost, durability, efficiency and fuel utilization are important issues that remain to be resolved for commercialization of proton exchange membrane fuel cells (PEMFC). Anode flow mode, which includes recirculation, dead-ended and exit bleeding operation, plays an important role in fuel utilization, durability, performance and the overall cost of the fuel cell system. Depending on the flow mode, water and nitrogen accumulation in the anode leads to voltage transients and local fuel starvation, which causes cell potential reversal and carbon corrosion in the cathode catalyst layers. Controlled anode exit bleeding can avoid the accumulation of nitrogen and water and improve fuel utilization. In this study, we present a method to control the bleed rate with high precision in experiments and demonstrate that hydrogen utilization as high as 0.9988 for a 25 cm2 single cell and 0.9974 for an 8.17 cm2 single cell can be achieved without significant performance loss. In the experiments, anode pressure is kept at 1 bar higher than the cathode pressure to decrease nitrogen crossover from the cathode, decreasing the crossover from the cathode. Moreover, four load cycle profiles are applied to observe the cumulative loss in the electrochemical surface area (ECSA), which are acquired from cyclic voltammetry (CV) analysis. Experiments confirm that the ECSA loss and severe voltage transients are indicative of fuel starvation induced by prolonged dead-ended or low exit-bleed operation modes whereas bleed rates that are larger than the predicted crossover rate are sufficient to operate the fuel cell without voltage transients and detrimental ECSA loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号