首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A theoretical model of the solid oxide fuel cell (SOFC) fueled by carbon monoxide is adopted and validated, in which the activation overpotential, concentration overpotential, and ohmic overpotential are regarded as the main sources of voltage losses. Based on the thermodynamic-electrochemical analysis, mathematical expressions of some performance parameters such as the cell potential, power output, efficiency, and entropy production rate are derived. The effects of microstructure parameters such as the electrode porosity, tortuosity, pore size, grain size, etc. on the electrochemical performance characteristics of the SOFC are revealed. Moreover, the effects of some operation conditions such as the current density, anode inlet gas molar fraction, operating temperature, and operating pressure on some important performance parameters of the SOFC are also discussed. It is found that there exist some optimal values of microstructure parameters and operating conditions at which the better performance can be expected. The results obtained in the paper may provide some theoretical guidance for the design and operation of practical SOFCs fueled by coal-derived gases.  相似文献   

2.
Natural gas is one of the most attractive fuels for solid oxide fuel cell (SOFC), while the anode activity for methane fuel has a great influence on the performance and stability of SOFC. Samarium is a good catalyst promoter for methane reforming. In this work, samarium is used to modify nickel catalyst, which results in small nickel oxide particles. The SmNi-YSZ (yttria-stabilized zirconia) anode has smaller particles and better interfacial contact between nickel and YSZ compared with conventional Ni-YSZ anode. The fine structure of SmNi-YSZ anode results in high activity for electrochemical oxidation of hydrogen and low polarization resistance of the cell. The performance of SmNi-YSZ anode cell with humidified methane as fuel is greatly improved, which is similar to that with hydrogen as fuel. The maximum power densities of SmNi-YSZ anode cell are 1.56 W cm−2 for humidified hydrogen fuel and 1.54 W cm−2 for humidified methane fuel at 800 °C. The maximum power density is increased by 221% when samarium is used to modify Ni-YSZ anode for humidified methane fuel at 650 °C. High cell performance results in good stability of SmNi-YSZ anode cell and the cell runs stably for more than 600 min for humidified methane fuel.  相似文献   

3.
A two dimensional model is developed to study the transport and reaction processes in solid oxide fuel cells (SOFCs) fueled by partially pre-reformed gas mixture, considering the direct internal reforming (DIR) of methane and water gas shift (WGS) reaction in the porous anode of SOFC. Electrochemical oxidations of H2 and CO fuels are both considered. The model consists of an electrochemical, a chemical model, and a computational fluid dynamics (CFD) model. Two chemical models are compared to examine their effects on SOFC modeling results. Different from the previous studies on hydrogen fueled SOFC, higher gas velocity is found to slightly decrease the performance of SOFC running on pre-reformed gas mixture, due to suppressed gas composition variation at a higher gas velocity. The current density distribution along the gas channels at an inlet temperature of 1173K is quite different from that at 1073K, as DIR reaction is facilitated at a higher temperature. It is also found that neglecting the electrochemical oxidation of CO can considerably underestimate the total current density of SOFC running on pre-reformed hydrocarbon fuels. An alternative method is proposed to numerically determine the open-circuit potential of SOFC running on hydrocarbon fuels. Electrochemical reactions are observed at open-circuit potentials.  相似文献   

4.
Solid oxide fuel cells (SOFCs) are very flexible, unlike other fuel cells. In principle, SOFCs can operate on almost any fuel. Currently much effort is invested in the development of SOFCs for portable applications operating directly on liquid fuels such as methanol and ethanol rather than hydrogen. However, there are very few publications dealing with the direct use of glycerol in SOFCs for portable systems. A recently published study shows that the performance achieved for an SOFC fueled by pure glycerol is quite interesting even when there is a thick electrolyte membrane, indicating that glycerol is a promising fuel for portable applications. For this reason a thermodynamic analysis for SOFCs operating directly on glycerol fuel is performed in the present study. The Gibbs energy minimization method computes the equilibrium compositions of the anode gas mixture, carbon deposition boundaries and electromotive forces (EMFs) as a function of fuel utilization and temperature. Moreover, the minimum amounts of H2O, CO2 (direct internal reforming case) and air (partial oxidation case) to be added to glycerol in the feedstock to avoid carbon deposition at the open circuit voltage (OCV) are calculated. Finally, a thermodynamic analysis is performed, taking into account the experimental conditions employed in a previous study. Experimental observations concerning carbon deposition in an SOFC operating on glycerol can be explained by the theoretical analysis developed in the present study. Additionally, the effect of mixed electronic-ionic conduction of the electrolyte on carbon deposition at the anode is discussed based on the thermodynamic analysis of the C-O system.  相似文献   

5.
The heat and mass transfer characteristics of solid oxide fuel cells (SOFCs) need to be considered when designing SOFCs because they heavily influence the performance and durability of the cells. The physical property models, the governing equations (mass, momentum, energy and species balance equations) and the electrochemical reaction models were calculated simultaneously in a 3-dimensional SOFC simulation. The current density-voltage (I-V) curves measured experimentally from a single SOFC were compared with the simulation data for code validation purposes. The error between the experimental data and the numerical results was less than 5% at operating temperatures from 700 °C to 850 °C. The current density and the mass transfer rate of an anode-supported SOFC were compared with those of a metal-supported SOFC. The metal-supported SOFC had a 17% lower average current density than the anode-supported SOFC because of the bonding layer, but it showed better thermal stability than the anode-supported SOFC because of its more uniform current density distribution. The current density, temperature and pressure drop of the metal-supported SOFC were investigated for several channel designs. A high current density was observed near the hydrogen inlet and at the intersection of the hydrogen and air channels. However, there was a low current density under the rib and at the cell edge because of an insufficient reactant diffusion flux. When the proper channel design was applied to the metal-supported SOFC, the average current density was increased by 45%.  相似文献   

6.
Dense yttria-stabilized zirconia (YSZ) electrolyte films were successfully fabricated onto anode substrates using a modified dry pressing process. The film thickness was uniform, and could be readily controlled by the mass of the nanocrystalline YSZ powders. The electrolyte films adhered well to the anode substrates by controlling the anode composition. An anode-supported solid oxide fuel cell (SOFC) with a dense YSZ electrolyte film of 8 μm in thickness was operated at temperatures from 700 to 800 °C using humidified (3 vol% H2O) hydrogen as fuel and air as oxidant. An open circuit voltage of 1.06 V and a maximum power density of 791 mW cm−2 were achieved at 800 °C. The results indicate that the gas permeation through the electrolyte film was negligible, and that good performance can be obtained by this simple and cost-effective technique which can significantly reduce the fabrication cost of SOFCs.  相似文献   

7.
Solid oxide fuel cells (SOFCs) transform the energy of the fuel instantly into electric energy with a large fuel option. Coal, which is a local energy source, is a preferred fuel despite its negative features because it is cheap and abundant. The use of coal and coal-based fuels in SOFCs has recently attracted considerable attention. In this study, performance analysis of the SOFC has been performed experimentally by using hydrogen, generator gas (contained 12% H2), and water-gas (contained 50% H2) in an electrolyte-supported SOFC (ES-SOFC). The numerical modelling of the fuel cell had been previously performed. In addition, the effect of inlet gas fuel flow rates on the ES- SOFC has been investigated numerically in this study. The temperature effect on the performance of ES-SOFC has been examined experimentally. It is seen that the performance of SOFCs fueled hydrogen is favorable than fueled water gas and generator gas. This is because of the higher hydrogen substance in the water gas measure against the other gas. In addition, it is seen that the increase in temperature increases the performance with positive effects on the reactions. It is also concluded that the performance of SOFC increases when inlet fuel flow rates increase.  相似文献   

8.
This study discusses the fabrication and electrochemical performance of micro-tubular solid oxide fuel cells (SOFCs) with an electrolyte consisting a single-grain-thick yttria stabilized zirconia (YSZ) layer. It is found that a uniform coating of an electrolyte slurry and controlled shrinkage of the supported tube leads to a dense, crack-free, single-grain-thick (less than 1 μm) electrolyte on a porous anode tube. The SOFC has a power density of 0.39 W cm−2 at an operating temperature as low as 600 °C, with YSZ and nickel/YSZ for the electrolyte and anode, respectively. An examination is made of the effect of hydrogen fuel flow rate and shown that a higher flow rate leads to better cell performance. Hence a YSZ cell can be used for low-temperature SOFC systems below 600 °C, simply by optimizing the cell structure and operating conditions.  相似文献   

9.
Solid oxide fuel cells (SOFC) are attractive power units for mobile applications, like auxiliary power units or range extenders, due to high electrical efficiencies, avoidance of noble metals, fuel flexibility ranging from hydrogen to hydrogen carriers such as ammonia, methanol or e-gas, and tolerance towards CO and other fuel impurities. Among challenges hindering more wide-spread use are the robustness under thermal cycling. The current study employs short stacks containing anode or metal supported SOFCs, which were subjected to thermal cycles in a furnace and under more realistic conditions without external furnace. Heating from 100 °C to operating temperature was accomplished by sending hot air through the cathode compartment and heating from bottom (and top) of the stack, reaching a fastest ramping time of ca. 1 h. The stacks remained intact under severe temperature gradients of at least 20 °C/cm for anode supported and 30 °C/cm for metal supported SOFCs.  相似文献   

10.
In this paper, a novel process for the production of pure hydrogen from natural gas based on the integration of solid oxide fuel cells (SOFCs) and solid oxide electrolyzer cells (SOECs) is presented. In this configuration, the SOFC is fed by natural gas and provides electricity and heat to the SOEC, which carries out the separation of steam into hydrogen and oxygen. Depending on the system layout considered, the oxygen available at the SOEC anode outlet can be either mixed with the SOFC cathode stream in order to improve the SOFC performance or regarded as a co-product. Two configurations of the cell stack are studied. The first consists of a stack with the same number of SOFCs and SOECs working at the same current density. In this case, since in typical operating conditions the voltage delivered by the SOFC is lower than the one required by the SOEC, the required additional power is supplied by means of an electric grid connection. In the second case, the electricity balance is compensated by providing additional SOFCs to the stack, which are fed by a supplementary natural gas feed. Simulations carried out with Aspen Plus show that pure hydrogen can be produced with a natural gas to hydrogen LHV-efficiency that is about twice the value of a typical water electrolyzer and comparable to that of medium-scale reformers.  相似文献   

11.
In this study, the performance assessment of a solid oxide fuel cell (SOFC) fed with a reformate syngas mixture and having anode off-gas recirculation is done in terms of energy and exergy analyses. In this regard, a zero-dimensional (0-D) mathematical model for SOFCs is developed. This model is validated by the results of the in-house experimental studies. In addition, parametric studies are carried out to assess the effect of operating parameters on fuel cell performance. The results show that the proposed model is very agreeable with experimental studies. The maximum error found in the validated model is 6.8% at the operating temperature of 800 °C. In addition, it is shown that the anode off-gas recirculation ratio does not have a significant effect on the performance of the SOFC at low current densities. Furthermore, the exergy destruction rate of SOFC increases by 23.2% under the high current density condition (i = 1.4 A/cm2) when the fuel utilization ratio increases from 0.75 to 0.95.  相似文献   

12.
Natural gas is one of the most important fuels for solid oxide fuel cell (SOFC). The relationships among the reactions of methane over the nickel-based anode, fuel compositions, carbon deposition, electromotive force (EMF) and open circuit voltage (OCV) of SOFC are investigated in this work. With the increase of temperature, EMF and OCV of SOFC decrease gradually when the cell uses humidified hydrogen as fuel. Reactivity of methane increases gradually with the increase of temperature, which can affect the EMF and OCV of SOFC. When the humidified mixture of nitrogen and methane is used as the fuel, the EMF and OCV of SOFC increase gradually with the increase of temperature. EMF and OCV of SOFC with humidified mixture of hydrogen and methane (MCH4: MH2: MH2O = 12.2: 85.3: 2.5) as fuel decrease gradually with the increase of temperature when the temperature is lower than 873 K, which is similar to that with humidified hydrogen as fuel. While when the temperature is higher than 923 K, the EMF and OCV of SOFC with humidified mixture of hydrogen and methane as fuel increase gradually with the increase of temperature, which is similar to that with humidified mixture of nitrogen and methane as fuel. OCV of SOFC is mainly affected by thermodynamic equilibriums for methane-fuelled SOFC when the anode activity is high enough, which is close to the EMF calculated according to the thermodynamic equilibriums. While with the increase of carbon deposition, the anode activity decreases apparently and the OCV of SOFC also decreases apparently, which shows that the OCV is affected by the anode activity for methane-fuelled SOFC when the anode activity is low.  相似文献   

13.
Solid oxide fuel cell (SOFC) technology is attractive for its high-energy efficiency and expanded fuel flexibility. It is also more environmentally benign than conventional power generation systems. Recently, increasing attention has been paid to intermediate-to-low-temperature solid oxide fuel cells, which operating at 400–800 °C. Reducing its operating temperature can render SOFC more competitive with other types of fuel cells and portable energy storage system (EES) over a range of applications (eg: transportation, portable, stationary) and more conducive for commercialization. The high-performance composite anode requirements for low operating temperature (400–600 °C) demand microstructural and chemical stability, high electronic conductivity, and good electrochemical performance. The current high-temperature anode, Ni-YSZ (nickel-yttria stabilized zirconia) is generally reported with high interfacial resistance at reduced temperatures. This review highlights several potential composite anode materials (Ni-based and Ni-free) that have been developed for low-temperature SOFCs within the past 10 years. This literature survey shows that most of these anodes still exhibit relatively high polarization resistance. Focus is also given on reducing polarization resistance to maintain the cell power density. In literature, common approaches that have been adopted to enhance the performance of anodes are (i) selecting high-performance electrolyte, (ii) exploiting nanopowder properties, and (iii) adding noble metals as electrocatalysts.  相似文献   

14.
A two-dimensional model is developed to simulate the performance of methane fueled solid oxide fuel cells (SOFCs), focusing on the effect of electrolyte type on SOFC performance. The model considers the heat and mass transfer, direct internal reforming (DIR) reaction, water gas shift reaction (WGSR), and electrochemical reactions in SOFCs. The electrochemical oxidation of CO in oxygen ion-conducting SOFC (O-SOFC) is considered. The present study reveals that the performance of H-SOFC is lower than that of O-SOFC at a high temperature or at a low operating potential, as electrochemical oxidation of CO in O-SOFC contributes to power generation. This finding is contrary to our common understanding that proton conducting SOFC (H-SOFC) always performs better than O-SOFC. However, at a high operating potential of 0.8 V or at a lower temperature, H-SOFC does exhibit better performance than O-SOFC due to its higher Nernst potential and higher ionic conductivity of the electrolyte. This indicates that the proton conductors can be good choices for SOFCs at intermediate temperature, even with hydrocarbons fuels. The results provide better understanding on how the electrolyte type influences the performance of SOFCs running on hydrocarbon fuels.  相似文献   

15.
Future electricity production will use fossil-free sources with zero CO2 emission or closed carbon cycle technologies based on renewable sources. While hydrogen is considered a key energy source, its production at present time relies heavily on fossil fuels. Furthermore, distribution and storage are not well established and require substantial investments. This is a strong motivation to identify alternative, safe, high power density hydrogen carriers, where existing logistics and infrastructure can be utilized. In this contribution, ammonia and biogas are considered for high-efficient electricity production in solid oxide fuel cells (SOFCs). It is demonstrated that the properties and operating conditions of SOFC allow for direct use of these fuels, with fuel pretreatment inside the SOFC anode. The high efficient electricity production using pure ammonia or real biogas was successfully proven on state-of-the-art SOFCs. Even without optimization of operating parameters, electrical efficiencies of 40–50% and high and stable power output were demonstrated.  相似文献   

16.
In this work, solid oxide fuel cells (SOFCs) based on different electrolytes, i.e., the yttria-stabilized zirconia (YSZ) and the samaria-doped ceria (SDC), were investigated to study their performances at low-temperature operation. The predicted performance of both SOFCs was validated with the experimental results. The verified models were implemented to study the impact of operating conditions, i.e., cell temperature, pressure, thicknesses of cathode, anode, and electrolyte, on their performances. The decrease in the operating temperature from intermediate range (800–900 °C) to low range (550–650 °C) has a considerable effect on the performance of the YSZ-based SOFC as conventional type, which dropped from 0.67–1.40 W/cm2 to 0.027–0.13 W/cm2. Under the low operating temperature range, the performance of SDC-based SOFC was superior to that of the YSZ-based SOFC, due to the lower ohmic loss. Nevertheless, the SDC-based SOFC has higher concentration overpotentials than the YSZ-based SOFC. The concentration overpotentials of the SDC-based SOFC can be reduced by the thinner anode and cathode thicknesses. In addition, the SDC-based SOFC at low operating temperature with the pressurized operation could significantly improve its power density, about 20% at 2 bar, which was close to that of YSZ-based SOFC at intermediate temperature of 800 °C.  相似文献   

17.
With the rapidly declining cost of renewable energy, efficient ways are needed for its transportation between different regions. Hydrogen is becoming a major energy vector, with the key challenges of its storage and transportation commonly overcome by using ammonia for chemical storage of hydrogen energy. Ammonia, which is more energy dense than hydrogen and easier to transport, is a carbon-free alternative fuel that can be used in a variety of ways to generate power. Owing to their robustness and efficiency, solid-oxide fuel cells (SOFC) stand out as one of the most promising technologies that convert ammonia to electricity. Unlike other fuel cells, such as polymer electrolyte membranes, SOFCs do not require the fuel to be cleaned by energy-intensive external cracking and extensive cleaning; their high operating temperature provides the flexibility to crack the ammonia inside the anode or to use it directly. Here, we discuss experimental and numerical studies of ammonia SOFCs and critically review the status and opportunities for ammonia-fuelled SOFC technology. In the first section, we briefly outline the potential cathode and electrolyte materials for SOFCs. Only the anode component poses additional challenges with ammonia over the well-established hydrogen-fuelled SOFC technology, and this topic has been addressed in detail. Anode catalysts for ammonia decomposition, parameters affecting ammonia decomposition and anode catalyst degradation are also discussed. In the second section, we review the modelling studies for ammonia SOFCs. Finally, we run through the major commercial initiatives and demonstrations in green ammonia production and ammonia SOFCs.  相似文献   

18.
Integrated gasification fuel cell (IGFC) technology combining coal gasification and solid oxide fuel cell (SOFC) is believed to be the only viable solution to achieving U.S. Department of Energy (DOE)’s performance goal for next generation coal-based power plants, producing electricity at 60% efficiency (coal HHV-AC) while capturing more than 90% of the evolved CO2. Achieving this goal is challenging even with high performance SOFCs; design concepts published to date have not demonstrated this performance goal. In this work an IGFC system concept consisting of catalytic hydro-gasification, proven low-temperature gas cleaning and hybrid fuel cell-gas turbine power block (with SOFC operating at about 10 bar) is introduced. The system is demonstrating an electricity efficiency greater than 60% (coal HHV basis), with more than 90% of the carbon present in the syngas separated as CO2 amenable to sequestration. A unique characteristic of the system is recycling de-carbonized, humidified anode exhaust back to the catalytic hydro-gasifier for improved energy integration. Alternative designs where: (1) anode exhaust is recycled directly back to SOFC stacks, (2) SOFC stack operating pressure is reduced to near atmospheric and (3) methanation reactor in the reactor/expander topping cycle is removed, have also been investigated and the system design and performance differences are discussed.  相似文献   

19.
This study presents a 3D CFD model of a planar SOFC with internal reforming for anode flow field design. The developed model reflects the influence of various factors on fuel cell performance including flow field design and kinetics of chemical and electrochemical reactions. The case study illustrates applications of the CFD model for planar SOFC with different anode flow field designs. Simulation results indicate the importance of the anode flow field design for planar SOFCs. The model is useful for optimization of fuel cell design and operating conditions.  相似文献   

20.
Anode-supported cone-shaped tubular solid oxide fuel cells (SOFCs) are successfully fabricated by a phase inversion method. During processing, the two opposite sides of each cone-shaped anode tube are in different conditions--one side is in contact with coagulant (the corresponding surface is named as “W-surface”), while the other is isolated from coagulate (I-surface). Single SOFCs are made with YSZ electrolyte membrane coated on either W-surface or I-surface. Compared to the cell with YSZ membrane on W-surface, the cell on I-surface exhibits better performance, giving a maximum power density of 350 mW cm−2 at 800 °C, using wet hydrogen as fuel and ambient air as oxidant. AC impedance test results are consistent with the performance. The sectional and surface structures of the SOFCs were examined by SEM and the relationship between SOFC performance and anode structure is analyzed. Structure of anodes fabricated at different phase inversion temperature is also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号