首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inspired by the TM?N4 coordination environment and the promising hydrogen adsorption property of the Ti–C4 unit, four novel TM6C24N24 (TM = Sc, Ti) cages with six TM?N4/TM?C4 units are designed simultaneously for the first time in this paper. Their stabilities are studied by using DFT calculations and confirmed by MD simulations. Sc6C24N24(N4) and Ti6C24N24(N4) can absorb 30 hydrogen molecules and keep the original structures intact. The average hydrogen adsorption energy is 0.13–0.26 eV for Sc6C24N24(N4)-6nH2 (n = 1–5), and 0.09–0.23 eV for Ti6C24N24(N4)-6nH2 (n = 1–5). The hydrogen storage capacities are 6.30 wt % and 6.20 wt %, respectively. Besides, the 30H2 can be readily adsorbed on Sc6C24N24(N4) under 160 K and 100% desorbed at 270 K under 0.1 MPa. The desorption temperature could increase if the pressure becomes higher. Sc6C24N24(C4)/Ti6C24N24(C4) complexes are higher in energy than corresponding Sc6C24N24(N4)/Ti6C24N24(N4). They are not suitable as room-temperature hydrogen storage materials due to the structural deformation in the hydrogen storage process.  相似文献   

2.
Doping heteroatoms and producing defects are perfect methods to improve the hydrogen storage property of TM-decorated carbon materials. In this view, four novel Sc/Ti-decorated and B- substituted defective C60 fullerenes (B24C24) are explored. The special stability, large specific surface, uniform distribution of the metal and positively charged states make these four fullerenes have high hydrogen storage capacities. Especially, each Sc atom in Sc6B24C24(B4) can adsorb up to five H2 molecules with a storage capacity of 6.80 wt %. The adsorbed H2 molecules in Sc6B24C24(B4)–30H2 begin to relax at 190 K and are 100% released at 290 K. Moreover, a comparative study is carried out for hydrogen storage properties of Sc-decorated B4, C4, or N4 coordination environments. These results provide a new focus on the nature of B-, and N-substituted defective carbon nanomaterials.  相似文献   

3.
The dihydrogen storage capacity of ScxNy (x + y = 4) compounds have been theoretically investigated at different levels. At B3LYP-D3/6-311G(3df,3pd) level, ScN3 has multiple isomers with similar energies, which is an interference of hydrogen storage research. Sc2N2 and Sc3N has four and three isomers, respectively. For both systems, the lowest-lying isomers are planar Sc2N2 01 and Sc3N 01, which are energetically much low-lying by at least 20 kcal/mol than the other isomers, respectively. Sc3N 01 can adsorb 8H2 with gravimetric uptake capacity of 9.77 wt %. It satisfies the target specified by US DOE, however, some hydrogen molecules will dissociate and bond atomically on scandium atoms. The strong binding energy (0.66 eV/H2) exceeds the reversible adsorption range (0.1–0.4 eV/H2), which will cause high operating temperature to desorb hydrogen during the application process. Sc2N2 01 can adsorb 9H2 in the molecular form. The H2 gravimetric uptake capacity of Sc2N2 01 (9H2) (13.33 wt %) exceeds the target set by US Department of Energy, moreover, its average adsorption energy (0.32 eV/H2) is in the reversible adsorption range. The interaction of Sc2N2 01 with H2 molecules is considered by means of the bond critical points (bcp) in the quantum theory of atoms in molecules (QTAIM). The Gibbs free energy corrected adsorption energy points that the adsorption of Sc2N2 01(9H2) is energetically favorable below 240 K. Therefore, in ScxNy (x + y = 4), the planar compound Sc2N2 01 is more suitable to be a dihydrogen adsorption material.  相似文献   

4.
Bimetallic boron cycle, B6C2TM2 (TM = scandium, titanium), was recently predicted to have high stability and aromaticity. The hydrogen capabilities of these clusters were studied in the present work. Our computational results indicate that the gravimetric hydrogen uptake capacity of B6C2Sc2 and B6C2Ti2 and clusters are 11.7% and 11.4%, respectively. The adsorption energies of H2 molecules on B6C2Sc2 and B6C2Ti2 clusters are predicted with different calculational schemes to meet the criteria of reversible hydrogen storage. The interaction of H2 with B6C2Ti2 cluster is a little stronger than that with B6C2Sc2. Ab initio molecular dynamics simulations indicate that H2 molecules can be efficiently released from the metal sites of B6C2TM2 clusters at room temperature. The bulk-like B6C2Sc2 and B6C2Ti2 tetramer can also efficiently adsorb H2 molecules.  相似文献   

5.
With respect to first-principles calculations, the sandwich-type dinuclear organometallic compounds as (C5H5)2TM2 (M = Sc and Ti) can adsorb up to eight hydrogen molecules. The corresponding gravimetric hydrogen-storage capacity is 6.7 wt% for (C5H5)2Ti2 and 6.8 wt% for (C5H5)2Sc2. The multimetallocenes (e.g., CpTi3Cp and CpTi4Cp) complexes can further increase the H2 adsorption capacity to 8.7 wt% and 10.4 wt%, respectively. These sandwich-type organometallocenes proposed in this work are favorable for reversible adsorption and desorption of hydrogen under ambient conditions. These predictions will likely provide a new route for developing novel high-capacity hydrogen-storage materials.  相似文献   

6.
The effect of charge on the dihydrogen storage capacity of Sc2–C6H6 has been investigated at B3LYP-D3/6-311G(d,p) level. The neutral system Sc2–C6H6 can store 8H2 with gravimetric density of 8.76 wt %, and one H2 dissociates and bonds atomically on the scandium atom. The adsorption of 8H2 on Sc2–C6H6 is energetically favorable below 155 K. The atom-centered density matrix propagation (ADMP) molecular dynamics simulations show that Sc2–C6H6 can adsorb 3H2 within 1000 fs at 300K. Compared with Sc2–C6H6, the charged systems can adsorb more hydrogen molecules with higher gravimetric density, and all the H2 are adsorbed in the molecular form. The gravimetric densities of Sc2–C6H6+ and Sc2–C6H62+ are 9.75 and 10.71 wt%. Moreover, the maximum adsorption of charged systems are favorable in wider temperature range. Most importantly, the ADMP-MD simulations indicate that Sc2–C6H62+ can adsorb 6 hydrogen molecules within 1000 fs at 300K. It can be found that the gravimetric density (6.72 wt%) of Sc2–C6H62+ still exceeds the target of US Department of Energy (DOE) under ambient conditions.  相似文献   

7.
The demand for clean renewable energy is urgent in current. The hydrogen application is difficult mainly due to the ratively low capacity in the storage medium. In this work, the adsorption and desorption of the hydrogen molecules by the Li atoms decorated B38 cage are studied by the density functional theory. The calculated largest binding energy of one Li atom (2.68 eV and 2.58 eV) is upon the hexagonal hole of the B38 cage, which is much larger than the experimental cohesive energy of bulk Li (1.63 eV). Each Li atom in the outside of the B38 cage can adsorb up to four H2 molecules. The Ead of B38(Li-nH2)4 decreases from the 0.22 eV for n = 1 to the 0.11 eV for n = 4. The B38(Li–4H2)4 structure achieves the 6.85 wt% hydrogen gravimetric density, which is higher than the goal of 5.5 wt% before 2017 set by the United States Department of Energy. The almost the same partial density of states for the fifth H2 molecule as that of the isolated H2 molecule, the longer 4.5 Å distance between the fifth H2 molecule and the Li atom, together with the small NBO charges all reveal the weak electronic field around the Li+, which can interpret the weak H2 adsorption mechanism. Finally, the B38Li4 structure can easily release 9H2 molecules at 373 K known from the molecular dynamic simulation and practically trap about 1.08H2 molecules at 373 K/3 atom condition calculated by the grand partition function. Thus, its reversible practical HGD of B38Li4-14.34H2 is 6.18 wt%, which is almost the same value as the theoretical 6.85 wt% for B38(Li–4H2)4. Our studies will be the strong theory basis for the future application in hydrogen storage material development.  相似文献   

8.
Adsorption of eight numbers of H2, (H2)n where n = 1, 2, 4, 6, 8, 12, 18, 24, adsorbed on the C24N24 nanocage (CNNC) surface was investigated using three different DFT methods. Adsorption energies of various numbers of H2 adsorbed on the CNNC surface were obtained. Adsorption strength of the CNNC was found depending on the adsorbed H2 numbers and is in order: the H2 numbers of (H2) > (H2)2 > (H2)4 > (H2)6 > (H2)8 > (H2)12 > (H2)18 > (H2)24. The most stable adsorption configuration of (H2)12/CNNC, all adsorbed H2 molecules formed as the full monolayer (ML) coverage, are dissociative chemisorption. The bilayer of (H2)24/CNNC was found that the first and second layers are composed of 12H2 as dissociative chemisorption and 12H2 as physisorption, respectively. The high hydrogen storage capacity of the CNNC formed as (H2)24/CNNC, around 7.75 wt% was found.  相似文献   

9.
A series of salts of the B12H122− anion has been prepared: a solvent-free (N2H5)2B12H12, its solvates – (N2H5)2B12H12·H2O, (N2H5)2B12H12·2(CH3CN), (N2H5)2B12H12·(CH3OH), and the salt of a protonated azine – [(CH3)2CNNHC(CH3)2]2B12H12. These compounds have been synthesized from the commercially available precursors via one- or two-step procedures and fully identified on the basis of single-crystal and powder X-ray diffraction. At room temperature (N2H5)2B12H12 crystallizes in C2/c space group, with a = 18.480(5) Å, b = 6.5344(19) Å, c = 13.106(4) Å and β = 131.911(16)o, V = 1177.8(7) Å3, Z = 4. While this compound nominally contains ca. 10.7 wt% of hydrogen, it thermally decomposes above 200 °C releasing mainly N2 and NH3, with H2 being only the minor gaseous product. Contrary to the recently reported case of hydrazinates of borohydrides, doping with 5 mol% of FeCl3 does not increase the relative amount of hydrogen significantly, however, it alters the ratio of N2 and NH3.  相似文献   

10.
Based on first−principles calculations, we investigate the possibility of the two-dimensional porous C9N4 material as for hydrogen storage, and find that the adsorption energy of H2 molecules on the pristine C9N4 is too weak to meet the requirements of hydrogen storage, whereas the adsorption on the Li−decorated sheet is relatively moderate. Each C9N4 unit cell can incorporate 6 Li atoms, of which 3 Li atoms are located above the intrinsic hole and the others are below. The unit cell can hold 14 hydrogen molecules with an average adsorption energy of −0.12 eV, which meets the reversible storage condition of hydrogen, and the gravity density reaches 7.04 wt%. Particularly, 6Li@C9N4 maintains excellent H2 storage performance under a tensile strain within 2%. The ab initio MD simulations performed at 300 K show that all 14 H2 molecules remained on the double sides of 6Li@C9N4 in the absence and presence of strain. Therefore, we predict that Li−modified C9N4 could be a potential material with excellent ductility for hydrogen storage at room temperature.  相似文献   

11.
Alkali, alkaline earth and transition metal doped B6H6 complexes are considered for the hydrogen storage. Density functional theory (DFT) and second order Møller–Plesset methods with 6–311++G** basis set have been used for the study. B6H6Li, B6H6Be, B6H6Sc, B6H6Li2, B6H6Be2, B6H6Sc2 complexes can interact with maximum three, two, four, six, four and eight H2 molecules respectively with respective H2 uptake capacity of 7.2, 4.8, 6.5, 12.5, 8.3 and 9.1 wt%. This uptake capacity is well above the target set by the U.S. Department of Energy by 2020 except for the B6H6Be complex. Thermo chemistry calculations are carried out to estimate the Gibbs free energy corrected H2 adsorption energy which reveals whether adsorption of hydrogen on these complexes is favourable or not at different temperature. It is observed that H2 adsorption on all the six complexes are unfavourable at ambient conditions where as it is favourable below 150, 135, 75, and 50 K on B6H6Sc, B6H6Be, B6H6Li and B6H6Li2 complexes respectively. Various interaction energies in H2 adsorbed complexes are obtained using Many-body analysis approach. The H2 desorption temperature for the B6H6Li, B6H6Be, B6H6Sc, B6H6Li2, B6H6Be2 and B6H6Sc2 complexes is found to be 25, 165, 265, 10, 265 and 373 K respectively.  相似文献   

12.
The effect of the addition of 4th element on the hydrogen storage capacity of Ti0.32Cr0.43V0.25 alloy was evaluated by simulation and confirmed experimentally. The crystal lattice volume, phase formation energy, and hydrogen absorption energy of the alloys were calculated by ab initio calculation for the alloys containing the third-period transition metals as Sc, Cr, Mn, Fe, Co, Ni, Cu, and Zn. It was postulated that the hydrogen absorption would be favored by large crystal volume and low hydrogen absorption energy. The calculation suggested Sc as the most suitable element and the hydrogen capacities of a series of Ti0.32Cr0.43−xV0.25Scx alloys (x = 0.02–0.1) were determined accordingly. Among the alloys, the capacities of Ti0.32Cr0.41V0.25Sc0.02 and Ti0.32Cr0.39V0.25Sc0.04 alloys were higher than that of the Ti0.32Cr0.43V0.25 alloy. The capacity of both alloys could be enhanced further by the heat treatment at 1250 °C due to the elimination of the second-phase TiCr2.  相似文献   

13.
Hydrogen is being considered a ‘fuel of the future,’ a viable alternative to fossil fuels in fuel cell vehicles. Using Density Functional Theory simulations, reversible, onboard hydrogen storage in Sc-decorated triazine-based graphitic carbon nitride (g-C3N4) has been explored. Sc atom binds strongly on the g-C3N4 structure with a binding energy of ?7.13 eV. Each Sc atom can reversibly bind 7 molecules of hydrogen, giving a net gravimetric storage capacity of 8.55 wt%, an average binding energy of ?0.394 eV per H2, and a corresponding desorption temperature of 458.28 K, fulfilling the criteria prescribed by the US Department of Energy. The issue of transition metal clustering has been investigated by computing the diffusion energy barrier (2.79 eV), which may be large enough to hinder the clustering tendencies. The structural integrity of Sc-g-C3N4 has been verified through ab-initio Molecular Dynamics simulations. The interaction mechanism of Sc over g-C3N4 and H2 over Sc-g-C3N4 has been explored using density of states and charge transfer analysis. A flow of charge from valence 3d orbitals of Sc towards vacant orbitals of g-C3N4 during the binding of Sc over g-C3N4 is observed. The binding of H2 on Sc-g-C3N4 may be via Kubas type of interactions which is stronger than physisorption due to net charge gain by H 1s orbital from Sc 3d orbital. Our systematic investigations indicate that Sc-decorated g-C3N4 may be a high-performance material for reversible hydrogen storage applications.  相似文献   

14.
The use of hydrogen as a sustainable clean energy source has several benefits, such as reduction in dependency on petroleum fuel and emission of green house gases, and enhanced energy security. The H2 storage properties of Sc grafted calix[4]arene (CX) and octamethylcalix[4]arene (MCX) are investigated by using density functional theory with M06/6-311G(d,p) level of theory. It is observed that Sc strongly binds with benzene rings of CX and MCX through Dewar coordination with average Sc binding energy of 1.09 and 1.25 eV, respectively for CXSc4 and MCXSc4. Each Sc atom adsorbs 4 H2 molecules on both the Sc grafted systems and H2 molecules are bound by Kubas interaction with H2 interaction energy in the range of 0.2–0.5 eV. The calculated conceptual reactivity index shows the stability of the systems increases with number of hydrogen molecules. Hirshfeld charge analysis shows the charge transfer mechanism during H2 adsorption. Born-Oppenheimer molecular dynamics simulations of CXSc4-16H2 and MCXSc4-16H2 systems, show that these systems are stable up to 273 K and all the adsorbed H2 releases at 373 K. The hydrogen storage capacity of Sc grafted CX system is found to be 8.9 wt % and for MCX system is 9.7 wt %. The energy and storage capacity meets the US Department of Energy target, which makes them a propitious hydrogen storage material.  相似文献   

15.
Hydrogen, as a clean alternative to fossil fuels, has received much attention in recent years. But its utilizing requires to overcome storage problems. Here, we investigated the hydrogen adsorption behavior of graphenylene (GPY), a 2D carbon nanostructure, and Sc, Fe and Ti transition metal (TM) decorated GPY by spin-polarized DFT calculations. For TM-decoration of GPY, seven different sites and various distances from carbon sheet were investigated, carefully. Structural and electronic properties of the structures, adsorption energies, band gap values, and the most stable configurations were considered and discussed. Results showed that 6-membered ring (H2 site) is the best site for Sc, Fe, and Ti-decoration and corresponding Eads was −3.95, −2.66, and −3.65 eV, respectively. Also, pristine GPY and Sc and Ti-decorated GPY have not magnetic character, unlike Fe-GPY. As well, entrance of Sc, Fe and Ti atoms in H2 site of the GPY structure causes its band gap increases from 0.033 eV to of 0.491, 0.080, and 0.372 eV, respectively. Eads of the H2 molecule onto pristine GPY is low (−0.160 eV), and must be improved for practical hydrogen storage applications. Sc, Fe, and Ti-decoration improves it about 2.23, 5.69 and 3.63 times. Because of this improvement, we could store up to 20H2 molecules on TM-decorated GPY systems. These results indicate that TM-decorated GPY can be a suitable option for H2 storage applications in the future.  相似文献   

16.
In this work, we present the hydrogen adsorption capacity of Sc doped small boron clusters (BnSc2, n = 3–10) using density functional theory. Almost no structural change was observed in the host clusters after hydrogen adsorption. Stabilities of the studied clusters were confirmed by various reactivity parameters such as hardness (η), electrophilicity (ω), and electronegativity (χ). The average adsorption energies was found in the range of 0.08–0.19 eV/H2 inferring physisorption process, and the fact is also supported by the average distance from Sc to H2 molecules which was in the range of 2.13 Å-2.60 Å. All the clusters were found to have gravimetric density satisfying the target set by the U.S. Department of Energy (US-DOE) (5.5 wt% by 2020). From Bader's topological analysis, it was confirmed that the nature of interaction was likely to be somewhat closed shell type. ADMP molecular dynamics simulations study was performed at different temperatures to understand the adsorption and dissociation of H2 from the complexes.  相似文献   

17.
We investigated hydrogen some properties of magnesium hydrides substituted with titanium by a first principles calculation. In order to evaluate effect of different substitution concentration and configuration on desorption temperature and bulk modulus, we constructed five systems such as Mg4Ti2H12, Mg8Ti2H20, Mg16Ti2H36, Mg14Ti4H36 and Mg12Ti6H36 by using 1 × 1 × 3, 1 × 1 × 5 and 3 × 3 × 1 super cell of pure magnesium hydride. Among the investigated systems, Mg14Ti4H36 system showed the best performance as hydrogen storage material in the complex viewpoints of substitution energy, desorption temperature and bulk modulus. In addition to, our results demonstrated that not only substitution concentration but also configuration plays vital effect on material's property of magnesium hydrides. Bader charge analysis explained the reason why desorption temperature is fallen down by substitution with titanium.  相似文献   

18.
The hydrogen adsorption and storage of Cu3Bx (X = 1–4) compounds have been computationally investigated at B3LYP-D3/6-311G (3df, 3pd) level. The most stable compounds of Cu3Bx (X = 1–4) can adsorb 16, 11, 15, and 9 hydrogen molecules with H2 gravimetric densities of 13.80, 9.46, 11.94, 7.20 wt%, respective. Their average adsorption energies are in the range of 0.26–0.43 eV/H2. The Gibbs free energy corrected adsorption energies indicate that the maximum adsorption of Cu3Bx (X = 1–4) are energetically favorable under ambient conditions. Atom-centered density matrix propagation (ADMP) molecular dynamics simulations are used to analyzed the real time dynamics of H2 and Cu3Bx (X = 1–4). We can find that Cu3Bx (X = 1–4) can bind with 4–5 H2 within 1000 fs at 200 K.  相似文献   

19.
Alkali hydrazinidoboranes MN2H3BH3 (M = Li, Na, K, Rb) have been developed for hydrogen storage. To complete the family of MN2H3BH3, we focused on cesium hydrazinidoborane CsN2H3BH3 (CsHB). It has been synthesized by reaction of cesium with hydrazine borane (N2H4BH3) at −20 °C under inert atmosphere, and it has been characterized. A crystalline solid (monoclinic, s.g. P21 (No. 4)) has been obtained. Its potential for hydrogen storage has been studied by combining different techniques. It was found that, under heating at constant heating rate (5 °C min−1) or at constant temperature (e.g. 120 °C), CsHB decomposes rather than it dehydrogenates. It releases several unwanted gaseous products (e.g. NH3, B2H6) together with H2, and transforms into a residue that poses safety issues because of shock-sensitivity and reactivity towards O2/H2O. Though the destabilization brought by Cs+ onto the anion [N2H3BH3] has been confirmed, the effect is not efficient enough to avoid the aforementioned drawbacks. All of our results are presented herein and discussed within the context of solid-state hydrogen storage.  相似文献   

20.
Interaction of molecular hydrogen with Li and Ti doped boron substituted naphthalene viz. C6B4H8Ti2 and C6B4H8Li2 has been studied using density functional theory (DFT) method. The C6B4H8Li2 complex can interact with maximum of four hydrogen molecules, whereas three H2 molecules are adsorbed on C10H8Li2 complex. The C6B4H8Ti2 complex can interact with maximum of eight hydrogen molecules. The gravimetric hydrogen uptake capacity of C6B4H8Ti2 and C6B4H8Li2 complex is found to be 6.85 and 5.55 wt % respectively, which is higher than that of unsubstituted C10H8Ti2 and C10H8Li2 complexes. The boron substitution has significantly affected the hydrogen adsorption energies. The H2 adsorption energy and Gibb's free energy corrected H2 adsorption energy are found to be more prominent after boron substitution. The C6B4H8Ti2 and C6B4H8Li2 complexes are more stable than the respective unsubstituted C10H8Ti2 and C10H8Li2 complexes due to their higher binding energies. According to the atom-centered density matrix propagation (ADMP) molecular dynamics simulations C6B4H8Li2 complex retain not a single adsorbed hydrogen molecule during the simulation at room temperature, whereas five hydrogen molecules at 300 K and eight at 100 K are remain absorbed on C6B4H8Ti2 complex. The C6B4H8Ti2 complex is found to be more promising material for hydrogen storage than C10B4H8Li2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号