首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
以氧化石墨为原料,采用电化学还原和超声剥离法制备了三维网状石墨烯,电化学法是在交变场中用方波实现的,最终制得的石墨烯具有明确的三维连通多孔网络结构,孔的大小在亚微米至数微米之间,孔壁由非常薄的石墨烯片堆积而成.用该材料做超级电容器电极材料,用循环伏安法,恒流充放电,交流阻抗法测试电极的电容性能,当扫描速率为10 mV/s时,电容器比电容为140 F/g,等效电阻小于1 Ω,三维网状石墨烯具有性能稳定,充放电效率高,循环性能好,适合于大电流充放电等优良性能.  相似文献   

2.
Engineering multicomponent active materials as an advanced electrode with the rational designed core-shell structure is an effective way to enhance the electrochemical performances for supercapacitors. Herein, three-dimensional self-supported hierarchical CoMoO4@CoS core-shell heterostructures supported on reduced graphene oxide/Ni foam have been rationally designed and prepared via a facile approach. The unique structure and the synergistic effects between two different materials, as well as excellent electronic conductivity of the reduced graphene oxide, contribute to the increased electrochemically active site and enhanced capacitance. The core-shell CoMoO4@CoS composite displays the superior specific capacitance of 3380.3 F g−1 (1 A g−1) in the three-electrode system and 81.1% retention of the initial capacitance even after 6000 cycles. Moreover, an asymmetric device was successfully prepared using CoMoO4@CoS and activated carbon as positive/negative electrodes. It is worth mentioning that the device delivered the high energy density of 59.2 W h kg−1 at the power density of 799.8 W kg−1 and the excellent cycle performance (about 91.5% capacitance retention over 6000 cycles). These results indicate that the core-shell CoMoO4@CoS composites offers the novelty strategy for preparation of electrodes for energy conversion and storage devices.  相似文献   

3.
PdZn alloys and Pd catalyst decorated 3D hierarchically porous carbon (HPC) network catalysts were prepared by a facile and simple impregnation/carbonization process from energetic MOFs of MET-6. Due to the high uniformly dispersion of metal nanoparticles and strong metal-support interactions, the as prepared HPC-PdZn catalysts exhibited highly efficient catalytic hydrogen production from formaldehyde solution at room temperature, which is much higher than that of pure Pd nano-particles. By further optimizing the reaction parameters such as reaction temperature, formaldehyde concentrations, and NaOH concentrations, the hydrogen generation rates could be further increased to unprecedented 572.6 mL·min−1 g−1, which was nearly 4 times as much as the solely Pd nanoparticles counterparts. Owing to its high efficiency and stability at room temperature, the as-prepared HPC-PdZn architectures catalyst based hydrogen generation reaction may serve as state-of-the-art candidate in both hydrogen supply and environmental cleaning.  相似文献   

4.
Walnut Shell-derived hierarchical porous carbon has been successfully synthesized by the efficient KOH activation process. The hierarchical porous carbon material activated at 600 °C, has the specific micropore area of 1037.31 m2 g−1 and micropore volume of 0.51 cm3 g−1, which leads to have electrochemical performances of the hydrogen evolution reaction (HER) and supercapacitors. Specifically, as the hydrogen evolution reaction electrocatalyst, the walnut shell-derived carbon material activated at 600 °C exhibits a lower onset potential of 6.00 mV, a smaller Tafel slope of 69.76 mV dec−1 and outstanding stability above long-term cycling. As a supercapacitor electrode material, the sample possesses specific capacitance of 262.74 F g−1 at 0.5 A g−1, the remarkable rate capability of 224.60 F g−1 at even 10 A g−1 and good long-term stability. A symmetric supercapacitor shows the highly energy density of 7.97 Wh kg−1 at a power density of 180.80 W kg−1. This novel and low-cost biomass material is very promising for the electrocatalytic water splitting and supercapacitors.  相似文献   

5.
An electrocatalyst based on a unique three-dimensional (3D) N-doped porous carbon sheet networks embedded with CoP2 nanoparticles (CoP2@3D-NPC) was synthesized by a facile pyrolysis process as well as an in-situ phosphatization method. The improved CoP2@3D-NPC hybrid materials show excellent electrocatalytic activity toward HER and OER. This material provides a low overpotential of 126 mV at 10 mA cm−2 in 0.5 M H2SO4 and 167 mV at 20 mA cm−2 in 1.0 M KOH for HER with a small Tafel slope value of 59 mV dec−1, respectively. Besides, it is also active for the OER under alkaline conditions. Such a prominent property of the CoP2@3D-NPC electrocatalyst could be attributed to its excellent electrical conductivity of 3D carbon substrate, strong synergistic effect between CoP2 nanoparticles and carbon nanosheet as well as extra active sites created by the N-doped structure.  相似文献   

6.
Three-dimensional hierarchical porous graphene with nickel nanoparticles (3DHPG-Ni) was synthesized through electrostatic assembly method with the assistance of poly (methyl methacrylate) (PMMA) template and subsequent removal of PMMA template by calcination. The morphology, microstructure and hydrogen adsorption properties of 3DHPG-Ni nanocomposites were examined in detail. The obtained 3DHPG-Ni nanocomposite exhibited hierarchical porous structure composed of macro-, meso- and micropores, high specific surface area (925 m2 g?1), large pore volume (0.58 cm3 g?1) and excellent hydrogen storage capacity. Under the pressure of 5 bar, 3DHPG-Ni nanocomposite showed a maximum hydrogen capacity of 4.22 wt% and 1.95 wt% at 77 K and 298 K, respectively, demonstrating that the as-prepared 3DHPG-Ni nanocomposite was supposed to be a promising material with outstanding properties for practical applications in the field of hydrogen storage. The three-dimensional hierarchical porous structure, evenly distributed Ni nanoparticles and hydrogen spillover effect were responsible for the enhanced hydrogen storage capacities.  相似文献   

7.
Nickel silicate hydroxide on hierarchically porous carbon derived from rice husks is prepared as electrode material for supercapacitors. AAEMs1 in rice husks and CO2 promote the development of pores, which act as pore-forming agent and catalyst respectively. The rice husks carbon is used as the substrate and the SiO2 in rice husks is converted into Ni–Si compound by loading Ni. The C/NiSi-600-1 shows remarkable electrochemical performance with 237.07 F/g at 0.5 A/g. The performance declines with crystalline SiO2 formed above 900 °C. A high-performance asymmetric water-system supercapacitor device is fabricated by C/NiSi-600-1 and activated carbon. This device shows capacitance of 142 mF/cm2 at 4 mA/cm2, the energy density of 25.24 Wh/kg at 551.4 W/kg and great cycle stability with 90% after 10,000 cycles. This work provides new insights into the green application of rice husks and promotes the development of electrode materials for supercapacitors.  相似文献   

8.
Modifying the texture of carbon nitride to adjust its physicochemical performance is a fascinating method for achieving high photocatalytic activity. Herein, we synthesized 3D porous carbon nitride with ultra-thin nanosheets by using cyanuric acid-melamine supramolecular and ionic liquid as precursor and template, respectively. The ionic liquid adjusts the morphology of materials and induces the carbon residue into the porous channels owing to its incomplete degradation. The 3D porous framework makes carbon nitride reflect the enhanced surface area, exposes adequate reaction sites, and offers a pathway for charge transport. And carbon residue and ultra-thin nanosheets further promote the photogenerated carriers transport and reduce the recombination rate of charge carriers. Consequently, 3D porous carbon nitride with ultra-thin nanosheets exhibit outstanding and stable hydrogen evolution under visible light irradiation. Significantly, as-fabricated sample CN-100 reflects an improved H2 generation rate, up to 17,028 μmol h?1 g?1, which is 12 times higher than that of CN (1412 μmol h?1 g?1). The present work offers a unique synthesis strategy to develop the novel photocatalyst with efficient photocatalytic performance.  相似文献   

9.
In this work, three-dimensional (3D) interconnected S-doped porous carbon materials are fabricated using bio-waste sodium lignosulfonate as carbon and sulfur precursor by in situ carbonization and subsequent KOH activation process. The as-obtained S-PC-50 has high specific surface area of 1592 m2 g?1, high S weight percentage up to 5.2 wt% and interconnected porous framework consisting of micro-, meso- and macropores. As a result, the S-PC-50 exhibits a high specific capacitance of 320 F g?1 at 0.2 A g?1, excellent rate performance with 76.5% capacitance retention after a current density increasing from 2 A g?1 (200 F g?1) to 100 A g?1 (153 F g?1) and 99% capacitance retention after 10,000 cycles at 5 A g?1. Besides, the symmetric supercapacitor can deliver a high energy density up to 8.2 Wh kg?1 at 50 W kg?1.  相似文献   

10.
The 3D framework carbon is an ideal host of active materials for energy storage batteries. In this work, KxNayMn[Fe(CN)6] (KNMF) nanocubes were in-situ grown on hierarchical porous 3D framework carbon (3DFC) to construct a composite cathode (KNMF@3DFC) for sodium-ion batteries. Owing to the hierarchical porous structure and large specific surface area, the highly conductive 3DFC offers abundant active sites for sodium storage and contributes to extra capacity. The considerable content of surface capacitance-dominated sodium storage of KNMF@3DFC composite cathode reveals faster charge transfer and better reaction kinetics, conducing to its rate capability. Ex-situ XRD/Raman measurements further reveal well structural stability of KNMF@3DFC during the whole cycle. Consequently, the KNMF@3DFC composite electrode reveals excellent rate performance and superior long-term cycling stability. Combining active materials with 3D framework carbon to enable a capacitance-dominated sodium storage mechanism is a promising strategy to stimulate the development of advanced electrode materials.  相似文献   

11.
12.
It is extremely necessary to develop highly efficient and low-cost non-noble metal electrocatalysts for hydrogen evolution reaction (HER) under a pH-universal condition in the realm of sustainable energy. Herein, we have successfully prepared phosphorus doped Fe3O4 nanoflowers on three-dimensional porous graphene (denoted as P–Fe3O4@3DG) via a simple hydrothermal and low-temperature phosphating reaction. The P–Fe3O4@3DG hybrid composite not only demonstrates superior performance for HER in 1.0 M KOH with low overpotential (123 mV at 10 mA/cm2), small Tafel slope (65 mV/dec), and outstanding durability exceeding 50 h, but also exhibits satisfying performances under neutral and acidic medium as well. The 3D graphene foam with large porosity, high conductivity, and robust skeleton conduces to more active sites, and faster electron and ion transportation. The phosphorus dopant provides low Gibbs free energy and ability of binging H+. The synergistic effect of 3DG substrate and P–Fe3O4 active material both accelerates the catalytic activity of Fe-based hybrid composite for HER.  相似文献   

13.
The development of excellent photocatalysts for hydrogen evolution is of great significance to solving the global energy crisis. In this work, a novel 3D hierarchical CdS/NiAl-LDH photocatalyst was fabricated by a facile electrostatic assembly strategy, which was composed of 1D CdS nanorods and 3D flower-like NiAl-LDH microspheres. Under the visible irradiation, the CNA-20 hierarchical photocatalyst presents the optimum hydrogen evolution rate achieved to 3.24 mmol g?1 h?1, which is improved 6.23-fold in comparison with the pure CdS. Through the analysis of energy band structures and first-principles calculation, the type-Ⅱ charge transfer mechanism was proposed. Driven by the built-in electric field, as well as the effect of intimate interface contact of CdS and NiAl-LDH, the photogenerated charge could be achieved rapidly separate and migrate, which effectively promotes the H2 evolution. This well-designed synergistic 1D/3D interface interaction and provides an economic approach to rationally developing metal-free photocatalysts for hydrogen production.  相似文献   

14.
Compared with symmetric supercapacitors, asymmetric supercapacitors are been widely applied in energy storage devices because of delivering an impressible energy density. Herein, a simple temple strategy was used to fabricate the porous hollow carbon spheres (PHCS) with high specific surface area of 793 m2 g?1, large pore volume of 1.0 cm3 g?1 and pore size distribution from micropores to mesopores, serving as the capacitive electrodes of asymmetric supercapacitors. Subsequently, manganese dioxide (MnO2) was impregnated into the PHCS to form a faradic electrode with a promising performance, owing to a synergistic effect between high capacity MnO2 and conductive PHCS. Furthermore, the flexible asymmetric solid‐state devices were constructed with PHCS anode, PHCS@MnO2 cathode, and PVA/LiCl electrolyte, extending a voltage window up to 1.8 V. The extensive voltage window would lead to an increased energy density. In our case, the flexible asymmetric sandwich exhibit excellent electrochemical performance in terms of a high energy density capacity of 26.5 W·h kg?1 (900 W kg?1) and superior cycling performance (10 000 cycles). Therefore, the developed strategy provides a strategy to achieve the PHCS‐based composites for the application in the asymmetric solid‐state supercapacitors, which will enable a widely field of flexible energy storage devices.  相似文献   

15.
Combine SnO2 nanoparticles with some conductive carbonaceous materials has been regarded as one of the most effective strategies to solve the problems of poor conductivity and volume change. In this work, a SnO2/sulfonated graphene composite with 3D interpenetrating porous structure (3D SnO2/SG) was synthesized. The elaborate designed 3D SG structure not only generates an excellent electronic conductivity, but also buffers the volume expansion of the SnO2 particles. As a result, the desirable 3D possesses enhanced performance when used as anode material in lithium battery. For example, the electrochemical results showed that the 3D SnO2/SG presents a high reversible specific capacity (928.5 mA h g?1 at the current density of 200 mA g?1). Even after 120 cycles, the specific capacity of 679.7 mA h g?1 (at the current density of 400 mA g?1) are still maintained.  相似文献   

16.
This paper addresses the preparation of three-dimensional functionalized carbon felts (CFs), which were coated with nickel (Ni) nanostructures and used as an electrocatalyst for glycerol electrooxidation in alkaline medium. The commercial CFs (3D-carbon fibers) were first functionalized with O- and S- like functionalities via electrochemical pretreatment in NaOH and H2SO4, then the impacts of this pretreatment on the electrodeposited Ni nanoparticles (NiNPs) morphology, distribution, structure and performance for glycerol electrooxidation was investigated. X-ray diffraction (XRD) together with cyclic voltammetry (CV) techniques were used to detect the changes of the electrodeposited Ni oxide phases. Contact angle was used to determine impact of pretreatment on the wettability of CF. X-ray photoelectron spectroscopy (XPS) was used to get information about the added functional groups while scanning electron microscope (SEM) was used to observe the changes of NiNPs morphology, distribution, and particle size. As-synthesized NiNPs modified functionalized CFs exhibited an excellent activity concurrent with good stability for glycerol electrooxidation. The pretreatment of CF in either NaOH or H2SO4 resulted in a significant increase in the Ni surface active sites and improved their electrocatalytic activity for glycerol electrooxidation.  相似文献   

17.
Nanorod assembled three-dimensional (3D) hierarchical Zn0.2Cd0.8S microspheres were successfully prepared by a facile one-pot microwave hydrothermal approach using ethylenediamine (EN) as a template agent. The optimal 3D hierarchical Zn0.2Cd0.8S microspheres (ZCS-30) is obtained when adding 30 mL into the synthetic system, which can function as a highly active photocatalyst for H2 evolution under visible-light irradiation with the wavelength of 420 nm, delivering an activity approximately 2.5 and 7.5 times higher than that of Zn0.2Cd0.8S nanoparticles and CdS counterparts, respectively, and giving an apparent quantum efficiency (AQE) of 7.4%. Furthermore, the ZCS-30 photocatalyst shows the good stability after the catalytic H2 evolution for 15 h (5 cycles). In addition, the ZCS-30 photocatalyst exhibits the excellent degradation of Rhodamine B (Rh B) almost up to 80% under the visible light irradiation over a period of 150 min. The results demonstrate that ZCS-30 can serve as a promising visible-light-driven bifunctional photocatalyst for water splitting and dye degradation.  相似文献   

18.
A highly efficient electrode for ethanol electrooxidation was successfully fabricated with the assistance of Nanoimprint Lithography (creation of 3D structure) and facile preparation method-electrodeposition. Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), X-ray Diffraction (XRD) and Raman spectroscopy were used to characterize the electrodes obtained, which were further evaluated by Cyclic Voltammetry Potentiostat. It concludes that the electrocatalytic activity of the electrodes towards ethanol oxidation is promoted in the sequence of Au < Au/rGO < Au/rGO/CoPt3. The synergy effect of reduced GO and CoPt3 nanoparticle along with highly active gold thin layer forming 3D structure is responsible for the significant improvement of the catalysis.  相似文献   

19.
A series of N-doped three dimensional porous carbons loaded with NiCo alloy nanoparticles (NiCo@NpCs) have been successfully fabricated by a template-assisted in-situ pyrolysis strategy and the ORR activities of different-concentration alloy supported N-doped carbons are systematically investigated. The optimized sample exhibits a positive half-wave potential of 0.78 V (vs. RHE), a high diffusion-limited current density (5.120 mA cm−2), and a high durability over 92%, which is superior to the Pt/C. The excellent activity and stability are mainly due to synergistic effect between carbon matrix and NiCo alloy. The N-doped porous carbon support with high surface area and good conductivity not only provides more active sites but also promotes electron transport and mass transfer process. Furthermore, the unique core-shelled structure NiCo@NpCs can effectively avoid the dissolution and corrosion of alloy particles and the surface peeling of particles during the catalyze reaction, which is beneficial to improving the activity and stability.  相似文献   

20.
Structure and interface control of heterojunction is usually a challenging issue to improve the photocatalytic performance. Herein, a new 3D/2D CoCO3/g-C3N4 heterojunction is assembled by embedding hexahedral CoCO3 on g-C3N4 nanosheets. The unique step-like hierarchical structure of CoCO3, the formed built-in electric field and Z-scheme charge transfer behavior at the interface jointly drive the high-efficient separation of photogenerated carriers to boost the photocatalytic H2 production. It achieves the optimal H2 production rate that is almost 2.6 times than g-C3N4, apparent quantum efficiency (AQE) of 10.1% at 400 nm and continuous running of 60 h over the 3D/2D CoCO3/g-C3N4 heterojunction. This work endows a fresh structural control strategy for the fabrication of 3D/2D Z-scheme heterojunction to improve the photocatalytic H2 production performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号