首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, design criteria and development techniques for planar air breathing direct methanol fuel cell stacks are described in detail. The fuel cell design in this study incorporates a window-frame structure that provides a large open area for more efficient mass transfer and is modular, making it possible to fabricate components separately. The membrane electrode assembly and gas diffusion layers are laminated together to reduce contact resistance, which eliminates the need for heavy hardware. The composite current collector is low cost, has high electrical conductivity and corrosion resistance. In the interest of quick and cost-efficient prototyping, the fabrication techniques were first developed on a single cell with an active area of 1.0 cm2. Larger single cells with active areas of 4.5 and 9.0 cm2 were fabricated using techniques based on those developed for the smaller single cell. Two four-cell stacks, one with a total active area of 18.0 cm2 and the other with 36.0 cm2, were fabricated by inter-connecting four identical cells in series. These four-cell stacks are suitable for portable passive power source applications. The performance analysis of single cells as well as stacks is presented. Peak power outputs of 519.0 and 870.0 mW were achieved in the stacks with active areas of 18.0 and 36.0 cm2, respectively. The effects of methanol concentration and fuel cell self-heating on the fuel cell performance are emphasized.  相似文献   

2.
Pd/C and Pd/MWCNT based electro-catalysts were prepared by impregnation and used as anodes for glycerol electro-oxidation in a microfluidic fuel cell. Average particle size and lattice parameters of the catalysts were determined by X-ray diffraction, resulting in 7.5 and 3.5 nm for Pd/C and Pd/MWCNT respectively. The electro-catalytic activity of Pd/C and Pd/MWCNT was investigated in 0.1 M glycerol. The results obtained by electrochemical studies in half cell configuration showed that the onset potential for glycerol oxidation on Pd/MWCNT was characterized by a negative shift ca. 40 mV compared to Pd/C. The maximum power density obtained was 0.51 and 0.7 mW cm−2 for Pd/C and Pd/MWCNT respectively. These results are comparable with those obtained for a microfluidic fuel cell that uses glucose as fuel. The results of this work not only show that glycerol can be used as fuel in a microfluidic fuel cell but also its performance is similar to that obtained with others fuels.  相似文献   

3.
A two-stage process using aqueous ammonia and hot-water has been investigated to fractionate corn stover. To maximize hemicelluloses recovery and purity in the liquid hydrolyzate by optimizing the fractionation process, the experiments were carried out employing response surface methodology (RSM). A central composite design (CCD) was used to evaluate and confirm the effectiveness and interactions of factors. The optimal fractionation conditions were determined to be as follow: (1) First-stage reactor operated in batch mode using a 15% NH4OH solution (wNH3 = 15%) at 1:10 solid:liquid ratio, 60 °C, and 24 h; (2) second stage percolation reactor operated using hot-water at 20 cm3 min−1, 200 °C, and 10 min.The model predicted 51.5% xylan recovery yield and 82.4% xylan purity under these conditions. Experiments confirmed the maximum xylan recovery yield and purity were 54.7% and 83.9% respectively under the optimal reaction conditions.With the solids resulting from the two-stage treatment, 87%-98% glucan digestibilities were obtained with 15 FPU of GC 220 per g-glucan and 30 CBU of Novo 188 per g-glucan enzyme loadings. Xylan digestibility of xylooligomer hydrolysates reached 76% with 8000 GXU per g-xylan of Multifect-Xylanase loading. In the simultaneous saccharification and fermentation (SSF) test using treated solids and Saccharomyces cerevisiae (D5A), 86 % to 98% of ethanol yield was obtained on the basis of the glucan content in the treated solids.  相似文献   

4.
Microbial electrolysis cells (MECs) are a new bio-electrochemical method for converting organic matter to hydrogen gas (H2). Palm oil mill effluent (POME) is hazardous wastewater that is mostly formed during the crude oil extraction process in the palm oil industry. In the present study, POME was used in the MEC system for hydrogen generation as a feasible treatment technology. To enhance biohydrogen generation from POME in the MEC, an empirical model was generated using response surface methodology (RSM). A central composite design (CCD) was utilized to perform twenty experimental runs of MEC given three important variables, namely incubation temperature, initial pH, and influent dilution rate. Experimental results from CCD showed that an average value of 1.16 m3 H2/m3 d for maximum hydrogen production rate (HPR) was produced. A second-order polynomial model was adjusted to the experimental results from CCD. The regression model showed that the quadratic term of all variables tested had a highly significant effect (P < 0.01) on maximum HPR as a defined response. The analysis of the empirical model revealed that the optimal conditions for maximum HPR were incubation temperature, initial pH, and influent dilution rate of 30.23 °C, 6.63, and 50.71%, respectively. Generated regression model predicted a maximum HPR of 1.1659 m3 H2/m3 d could be generated under optimum conditions. Confirmation experimentation was conducted in the optimal conditions determined. Experimental results of the validation test showed that a maximum HPR of 1.1747 m3 H2/m3 d was produced.  相似文献   

5.
Microfluidic fuel cells that use microorganisms to oxidize different organic substances to generate electricity are gaining importance due to their versatility to use different fuels. Saccharomyces cerevisiae has used for various purposes due to its capacity to ferment broad spectrum of carbohydrates. In this research, the development of bioanodes based on the immobilization of this yeast was carried out to apply them in the evaluation of a paper lateral-flow microfluidic fuel cell. Immobilization was performed using two different supports, Vulcan carbon and graphene oxide, and four carbohydrates as fuel (saccharose, glucose, fructose, and maltose). The results indicated that the yeast is better distributed and reaches a higher capacity to oxidize carbohydrates when is immobilized on graphene oxide, this bioanode shows better performance in the microfluidic device, reaching a potential above 0.9V when saccharose are used as fuel, representing a promising approach to use microbial bioanodes in small energy conversion devices.  相似文献   

6.
In this study, catalytic activity and performance of bis (dibenzylidene acetone) palladium (0) catalyst, Pd (DBA)2, was evaluated toward glycerol oxidation reaction (GOR) in alkaline half cell and alkaline direct glycerol fuel cell (DGFC). The electrooxidation of glycerol on Pd (DBA)2 was characterized in half cell by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) techniques. Obtained results have highlighted the excellent electrocatalyst activity of Pd (DBA)2 in terms of specific peak current density and onset potential compared to the results obtained by conventional Pd base catalysts. CVs results also demonstrate that Pd (DBA)2 is still active even after 200 cycles.  相似文献   

7.
Sulfur-based thermochemical cycles, such as the hybrid sulfur-ammonia (HySA) cycle, offer a valuable approach in which hydrogen is produced by exploiting sulfur dioxide (potentially pollutant emissions) through the electrochemical oxidation of aqueous sulfite. In this study, the effect of pH on electrooxidation rate was assessed by comparing different reaction scenarios. Then, a Central Composite Design (CCD) combined with a Response Surface Methodology (RSM) was used to optimize batch electrooxidation of ammonium sulfite at near-neutral pH. Results show that the use of an anion exchange membrane (AEM) greatly improves sulfite electrooxidation rate while pH is effectively stabilized. Furthermore, a second-order model that relates applied potential and sulfite concentration with the normalized half-life of the reaction was obtained and verified experimentally at long-term batch electrooxidations. A good agreement between the model and experimental tests, adequate hydrogen recoveries and low sulfur crossover through the membrane demonstrate practical robustness of this approach.  相似文献   

8.
A miniature air breathing compact direct formic acid fuel cell (DFAFC), with gold covered printed circuit board (PCB) as current collectors and back boards, is designed, fabricated and evaluated. Effects of formic acid concentration and catalyst loading (anodic palladium loading and cathodic platinum loading) on the cell performance are investigated and optimized fuel concentration and catalyst loading are obtained based on experimental results. A maximum power density of 19.6 mW cm−2 is achieved at room temperature with passive operational mode when 5.0 M formic acid is fed and 1 mg cm−2 catalyst at both electrodes is used. The home-made DFAFC also displays good long-term stability at constant current density.  相似文献   

9.
A novel in situ approach is proposed to visualize biofilm formation in the microchannel for the microfluidic microbial fuel cell (MMFC) anode, which could reflect a more precise biofilm formation during start-up process in real-time. A microchannel reactor was designed and fabricated based on a transparent indium-tin-oxide (ITO) conductive membrane. In situ visualization of biofilm formation under various anolyte flow rates was captured by a phase contrast microscope combined with a custom long working distance objective. The results show that no steady biofilm is formed on the surface of anode under low flow rate of 50 μL min?1 because of the insufficient nutrient supply. With increasing the anolyte flow rate, more attached bacteria on the anode surface and denser biofilm are observed in the microchannel. Less bacteria are attached on the surface of anode along flow direction due to the entrance effect. However, denser biofilm leads to larger mass transfer resistance of the anolyte and product in biofilm. Therefore, a superior bioelectrochemical performance is yielded for the biofilm formed under a moderate flow rate during start-up process.  相似文献   

10.
Although many studies have been done on finding operating conditions of hydrogen-fed fuel cells before, it remains one of the most critical points in determining its parameters in the process. So this paper aims to investigate experimentally the reactant gases flow rate and cell voltage which have a significant impact on the current density of a 3-cell Proton Exchange Membrane fuel cell stack having a 150 cm2 active layer. In this case, to determine the optimum values, Design of Experiment and Response Surface Methodology was applied to the experimental system at low 1.5 V, medium 1.8 V, and high 2.1 V. Then, they were compared with each other. In this context, keeping the hydrogen flow rate low and obtaining high current density is one of the main targets; at low voltage values, it was concluded that the flow rate should be increased due to the reaction rate increases with temperature. In general, the effect of humidification and cell temperature on performance was seen more prominently at 1.8 V. The highest current density values that were 313.66 mA/cm2, 336.75 mA/cm2, and 323.48 mA/cm2, respectively, were reached at flow rates of 1 L/min,1.3 L/min,1.6 L/min.  相似文献   

11.
Water and heat management are the most critical issues for the performance of proton exchange membrane (PEM) fuel cells. They can be provided by keeping hydrogen flow rate, oxygen flow rate, cell temperature and humidification temperature under control. In this study, the effects of these parameters on the power density of proton exchange membrane (PEM) fuel cell which has 25 cm2 active area have been examined experimentally using hydrogen on the anode side and oxygen on the cathode side. Response Surface Methodology (RSM) has been applied to optimize these operation parameters of proton exchange membrane (PEM) fuel cell. The test responses are the maximum output power density. ANOVA (analysis of variance) analyses are used to compute the effects and the contributions of the various factors to the fuel cell maximal power density. The use of this design shows also how it is possible to reduce the number of experiments. Hydrogen flow rate, oxygen flow rate, humidification temperature and cell temperature were the main parameters to have been varied between 2.5–5 L/min, 3–5 L/min, 40–70 °C and 40–80 °C in the analyses. The maximum power density was found as 241.977 mW/cm2.  相似文献   

12.
Hydrogen fermentation is a very complex process and is greatly influenced by many factors. Previous studies have demonstrated that temperature, pH and substrate are important factors controlling biological H2 production. Response surface methodology with central composite design was used in this study to optimize H2 production from glucose by an anaerobic culture. The individual and interactive effects of pH, temperature and glucose concentration on H2 production were also evaluated. The optimum conditions for maximum H2 yield of 1.75 mol-H2 mol-glucose−1 were found as temperature 38.8 °C, pH 5.7 and glucose concentration 9.7 g L−1. The linear effects of temperature and pH as well as their quadratic effects on H2 yield were significant, while the interactive effects of three parameters were minor.  相似文献   

13.
Supply utilities needed in site with the lowest cost and emission and highest efficiency are considered one of the main concerns of the process industry’s owners that requires doing more research in this area. In this research, during a case study, first comprehensive site of producing utility is optimized, and then the energy and environmental analysis of fuel cell system is taken place. Then fuel cell integration with utility site during two scenarios of entire supply of steam generated by HRSG of gas turbine and entire supply of gas turbine generated power was evaluated. According to the evaluation done, if the target is the entire supply of steam generated by HRSG of gas turbine, selecting solid oxide fuel cell (SOFC) system is economically and environmentally more affordable. So if the target is preheating, selecting the system is based on entire supply of steam generated by the boilers, and the number of eight SOFC systems will be required by which a power about 22 MW can be produced.  相似文献   

14.
The present work emphasized on the enhancement of microbial fuel cell (MFC) anode through the utilization of conductive polymer. The conductive polymer, poly(3,4-ethylenedioxythiophene) (PEDOT) was coated with varied concentrations onto graphite felt base anodes. The findings demonstrated that the optimum loading of 2.5 mg/cm2 recorded maximum current density of 3.5 A/m2 and coulombic efficiency of 51%. Higher loading of PEDOT enhanced the electrochemical characteristics of the anodes but exhibited unfavorable functionality. The charge transfer resistance of the modified anodes, Ra decreased significantly compared to the control anode after biofilm formation. The successful application of palm oil mill effluent (POME) wastewater as substrate indicates that the optimum anode was effective in degrading high organic wastewater. Exoelectrogens were found to be distributed mainly on the anodic biofilm. The microbial diversity of the anodes varied greatly from the inoculum and Geobacter was identified as the prevailing exoelectrogen responsible for the power generation.  相似文献   

15.
In this paper we demonstrate a simple and rapid fabrication method for a microfluidic polymer electrolyte membrane (PEM) fuel cell using polydimethylsiloxane (PDMS), which has become the de facto standard material in BioMEMS. Instead of integrating a Nafion sheet film between two layers of a PDMS device in a traditional “sandwich format,” we pattern a perfluorinated ion-exchange resin such as a Nafion resin on a glass substrate using a reversibly bonded PDMS microchannel to generate an ion-selective membrane between the fuel-cell electrodes. After this patterning step, the assembly of the microfluidic fuel cell is accomplished by simple oxygen plasma bonding between the PDMS chip and the glass substrate. In an example implementation, the planar PEM microfluidic fuel cell generates an open circuit voltage of 600–800 mV and delivers a maximum current output of nearly 4 μA. To enhance the power output of the fuel cell we utilize self-assembled colloidal arrays as a support matrix for the Nafion resin. Such arrays allow us to increase the thickness of the ion-selective membrane to 20 μm and increase the current output by 166%. Our novel fabrication method enables rapid prototyping of microfluidic fuel cells to study various ion-exchange resins for the polymer electrolyte membrane. Our work will facilitate the development of miniature, implantable, on-chip power sources for biomedical applications.  相似文献   

16.
The nitrogen oxide (NOx) release of diesel engines can be reduced using water in diesel emulsion fuel without any engine modification. In the present paper, different formulations of water in diesel emulsion fuels were prepared by ultrasonic irradiation. The water droplet size in the emulsion, polydisperisty index, and the stability of prepared fuel was examined, experimentally. Afterwards, the performance characteristics and exhaust emission of a single cylinder air-cooled diesel engine were investigated using different water in diesel emulsion fuels. The effect of water content (in the range of 5%–10% by volume), surfactant content (in the range of 0.5%–2% by volume), and hydrophilic-lipophilic balance (HLB) (in the range of 5–8) was examined using Box-Behnken design (BBD) as a subset of response surface methodology (RSM). Considering multi-objective optimization, the best formulation for the emulsion fuel was found to be 5% water, 2% surfactant, and HLB of 6.8. A comparison was made between the best emulsion fuel and the neat diesel fuel for engine performance and emission characteristics. A considerable decrease in the nitrogen oxide emission (–18.24%) was observed for the best emulsion fuel compared to neat diesel fuel.  相似文献   

17.
Two flow patterns (plug flow (PF) and complete mixing (CM)) of microbial fuel cells (MFCs) with multiple anodes–cathodes were compared in continuous flow mode for wastewater treatment and power generation. The results indicated that PF-MFCs had higher power generation and columbic efficiency (CE) than CM-MFCs, and the power generation varied along with the flow pathway in the PF-MFCs. The gradient of substrate concentrations along the PF-MFCs was the driving force for the power generation. In contrast, the CM-MFCs had higher wastewater removal efficiency than PF-MFCs, but had lower power conversion efficiency and power generation. This work demonstrated that MFC configuration is a key factor for enhancing power generation and wastewater treatment.  相似文献   

18.
A suitable operational strategy for a power interchange operation using multiple residential solid oxide fuel cell (SOFC) cogeneration systems for saving energy is investigated by an optimization approach based on mixed-integer linear programming. In this power interchange operation, electricity generated by residential SOFC cogeneration systems is shared among households in a housing complex without allowing a reverse power flow to a commercial electric power system in order to increase electric load factors of the system. For an SOFC cogeneration system operated continuously with the minimum output, two types of operational strategies for the power interchange operation are adopted: an operation to meet the total demand for electricity in intended households by the electricity output of SOFC cogeneration systems and an operation to meet the demand for hot water in each household by the hot water output of the SOFC cogeneration system. To clarify a theoretical limit of the energy-saving effects of the two strategies, this study numerically analyzes optimal operation patterns for 20 households on three representative days. The results show that the former operational strategy, which takes advantage of the high electricity generating efficiency of the SOFC, is more suitable for saving energy as compared to the latter strategy.  相似文献   

19.
This paper deals with the effects of the oxygen-enriched air (up to 50% oxygen by mass) along with other operating parameters (hydrogen flow rate, temperature, and relative humidity) on the performance of hydrogen-fuelled proton exchange membrane (PEM) fuel cell. The active area of a fuel cell considered was 50 cm2 with three cells in series connections. The air was supplied with O2 enriched from 23% to 50% at the cathode. The voltage obtained with the respective enriched air was 2.52 and 2.80 V respectively. The optimum oxygen enrichment was found as 45%. The stack temperature plays a significant role on performance improvement and the optimum temperature was found as 50 °C. The voltage efficiency and power output were improved by 9% and 33% with 45% oxygen-enriched air. Electrochemical impedance spectroscopy was used to analyze the impedance behavior of the fuel cell with the variable current demand. The bode plot indicates current dominates voltage at low oxygen-enriched air (25%) and vice-versa at high-enriched air. The inductive effect was dominating at the low frequency and overtaken by the capacitive effects at the higher frequency. These results would be useful to develop a dedicated fuel cell with the oxygen-enriched air.  相似文献   

20.
In this research, a novel Ni-Co-metallic glass composite was fabricated and the effect of the co-deposition of Ni60Cr10Ta10P16B4 amorphous metallic glass powder (MGP) on the morphology and electrocatalytic properties of Ni–Co coatings was evaluated. The process was initiated by producing Ni60Cr10Ta10P16B4 via mechanical alloying of elemental powders using a planetary ball mill. Then, Ni–Co nanocomposite coatings were deposited on a copper substrate by the addition of different amounts of MGP via the electrodeposition method in a Watts bath. Then, the microstructure and chemical composition of the deposits were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) successively. The electrocatalytic performance of the coatings was evaluated in a methanol-containing alkaline (1 M NaOH) solution through cyclic voltammetry (CV). The enhancement of the electrocatalytic activity of Ni–Co coating through the co-deposition of MGP was observed. It was also concluded that the electrocatalytic properties of composite coatings are optimized when 7.5 g L?1 of MGP is added to the electroplating bath. Moreover, MGP was demonstrated to have altered the microstructure and the content of Co besides enhancing the roughness and specific surface of coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号