首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study investigates hydrogen production in a hydrogen-permselective membrane reactor from purge gases of an ammonia plant. Hydrogen which initially exists in the purge gases and hydrogen that is produced from decomposition of ammonia on nickel–Alumina catalyst bed simultaneously permeate from reaction side to shell side through a thin layer of palladium–silver membrane. A sweep gas can be used in the shell side for increasing driving force. The amount of hydrogen that can be gained annually and effect of pressure, temperature, thickness of Pd–Ag layer, configuration of flow in the membrane reactor and sweep gas flow ratio have been studied. This study shows that the countercurrent mode is better than co-current mode of operation. The rate of hydrogen permeation increases with increasing of temperature, pressure and sweep gas flow rate. This approach produces and separates large amounts of hydrogen and decreases environmental impacts owing to ammonia emission.  相似文献   

2.
Coupling energy intensive endothermic reaction systems with suitable exothermic reactions followed by hydrogen permeation through the Pd/Ag membrane improves the thermal efficiency of processes, achieving the autothermality within the reactor, reduces the size of reactors, produces the pure hydrogen, and achieving a multiple reactants multiple products configuration. This paper focuses on optimization of hydrogen, dimethyl ether (DME) and benzene production in a membrane thermally coupled reactor. A steady-state heterogeneous mathematical model that is composed of three sides is developed to predict the performance of this novel configuration reactor. The catalytic methanol dehydration to DME takes place in the exothermic side that supplies the necessary heat for the catalytic dehydrogenation of cyclohexane to benzene reaction in the endothermic side. Selective permeation of hydrogen through the Pd/Ag membrane is achieved by co-current flow of sweep gas through the permeation side. This novel configuration can decrease the temperature of methanol dehydration reaction in the second half of the reactor and shift the thermodynamic equilibrium. The differential evolution (DE), an exceptionally simple evolution strategy, is applied to optimize membrane thermally recuperative coupled reactor considering the summation of methanol and cyclohexane conversions and dimensionless hydrogen recovery yield as the main objectives. The simulation results have been shown that there are optimum values of initial molar flow rate of exothermic and endothermic sides and inlet temperature of exothermic, endothermic and permeation sides to maximize the objective function. The optimization method has enhanced the methanol conversion by 2.76%. The optimization results are compared with corresponding predictions for a conventional (industrial) methanol dehydration adiabatic reactor operated at the same feed conditions. The results suggest that coupling of these reactions could be feasible and beneficial. An experimental proof-of-concept is needed to establish the validity and safe operation of the novel reactor.  相似文献   

3.
Coupling energy intensive endothermic reaction systems with suitable exothermic reactions improve the thermal efficiency of processes and reduce the size of the reactors. One type of reactor suitable for such a type of coupling is the heat-exchanger reactor. In this work, a distributed mathematical model for thermally coupled membrane reactor that is composed of three sides is developed for methanol and benzene synthesis. Methanol synthesis takes place in the exothermic side and supplies the necessary heat for the endothermic dehydrogenation of cyclohexane reaction. Selective permeation of hydrogen through the Pd/Ag membrane is achieved by co-current flow of sweep gas through the permeation side. A steady-state heterogeneous model of the two fixed beds predicts the performance of this novel configuration. The co-current mode is investigated and the simulation results are compared with corresponding predictions for an industrial methanol fixed-bed reactor operated at the same feed conditions. The results show that although methanol productivity is the same as conventional methanol reactor, but benzene is also produced as an additional valuable product in a favorable manner, and auto-thermal conditions are achieved within the both reactors and also pure hydrogen is produced in permeation side. This novel configuration can increase the rate of methanol synthesis reaction and shift the thermodynamics equilibrium. The performance of the reactor is numerically investigated for various key operating variables such as inlet temperatures, molar flow rates of exothermic and endothermic streams, membrane thickness and sweep gas flow rate. The reactor performance is analyzed based on methanol yield, cyclohexane conversion and hydrogen recovery yield. The results suggest that coupling of these reactions in the presence of membrane could be feasible and beneficial. Experimental proof-of-concept is needed to establish the validity and safe operation of the novel reactor.  相似文献   

4.
An indirect fuel cell system is constructed. The system is composed of a redox flow battery (RFB) to extract electrical energy and two chemical reactors (anolyte and catholyte regenerators). A quinone as a redox mediator is reduced by a mixture of hydrogen and carbon monoxide in the anolyte regenerator, whereas a polyoxometalate as another redox mediator is oxidized in the catholyte regenerator, followed by a steady-state power generation at the RFB using the two redox mediators as active materials. This system demonstrates how to reduce the amount of platinum required in a proton-exchange membrane fuel cell (PEMFC), especially when using a fuel other than pure hydrogen. The RFB in our system contains two gas-diffusion electrodes (GDEs) with a platinum electrocatalyst to insert a “pure hydrogen gas phase” between the anolyte and catholyte to avoid cross-contamination. These two GDEs participate in the hydrogen evolution reaction and hydrogen oxidation reaction, respectively, and require only a small amount of platinum. In addition, the catalysts used in the anolyte regenerator are rhodium complexes. However, these catalysts are in a dissolved state (molecular catalysts) with micromolar-order concentrations, and very little noble metal is used. A carbonaceous catalyst without platinum is used in the catholyte regenerator. This eliminates the need for a noble metal for the oxygen reduction reaction, which is the main reason why platinum is used in a large amount in a conventional PEMFC. Steady-state operations of the anode side, the cathode side, and the total system are demonstrated in this work. Although a small amount of noble metal is still required at this stage, this work may contribute to the complete elimination of noble metals from a PEMFC.  相似文献   

5.
Hydrogen production by the two-step solar thermochemical cycle has high cycle efficiency, low cost, and a great development space. Of special interest is the solar thermochemical cycle based on ZnO/Zn redox reactions since its high theoretical hydrogen yield and relatively low endothermic reaction temperature. In this paper, a steady heat transfer model for thermal ZnO dissociation in a solar thermochemical reactor is developed, coupling conduction, convection and radiation with chemical reaction. Accuracy was evaluated by comparison of results obtained from other references. Based on the new proposed reactor, the model is adopted to analyze the operating parameter effect on the conversion rate and fluid feature inside the solar reactor. The results show that the mass flow rate of ZnO and aperture gas temperature have a positive relation with ZnO conversion rate, however, the diameter of particles and aperture gas velocity has an inverse relation with ZnO conversion rate under specific condition. The results will provide useful foundation for improving the solar-to-fuel conversion rate in the near future.  相似文献   

6.
We designed and prepared a multi-membrane reformer (MMR) for the direct production of hydrogen via a steam-reforming (SR) reaction of methane. The MMR consisted of two single modules containing coin-shaped nickel metal catalysts and Pd-based membrane. The SR reaction was performed in the MMR for relatively high-pressure operation ranges (P2 = ∼21 bar) without sweep gas and the methane conversion and hydrogen production rate were observed under various experimental conditions. It was found that the high-performance of the Pd-based membrane and the porous metal catalyst and their configuration in the MMR guaranteed a high rate of hydrogen production. For instance, the methane conversion, the rate of hydrogen separation and the hydrogen purity were 75%, 30.6 L/h and 99.95%, respectively, under the experimental conditions of 540 °C, S/C = 3.0 and del-P = 20 bar. The design and performance of MMR show potential advantages, such as the simple preparation of a compact membrane reformer able to operate in relatively high-pressure ranges and easy enlargement of the hydrogen production capacity by stacking the modules, which is possible due to the disk-type shape of the metal catalyst and the membrane.  相似文献   

7.
In this study a numerical analysis of hydrogen production via an autothermal reforming reactor is presented. The endothermic reaction of steam methane reforming and the exothermic combustion of methane were activated with patterned Ni/Al2O3 catalytic layer and patterned Pt/Al2O3 catalytic layer, respectively. Aiming to achieve a more compacted process, a novel design of a reactor was proposed in which the reforming and the combustion catalysts were modeled as patterned thin layers. This configuration is analyzed and compared with two configurations. In the first configuration, the catalysts are modeled as continuous thin layers in parallel, while, in the second configuration the catalysts are modeled as continuous thin layers in series (conventional catalytic autothermal reactor). The results show that the pattern of the catalyst layers improves slightly the hydrogen yield, i.e. 3.6%. Furthermore, for the same concentration of hydrogen produced, the activated zone length can be decreased by 38% and 15% compared to the conventional catalytic autothermal reforming and the configuration where the catalysts are fitted in parallel, respectively. Besides, the oxygen consumption is lowered by 5%. The decrement of the catalyst amount and the oxygen feedstock in the novel studied design lead to lower costs and compact process.  相似文献   

8.
In this work a novel reactor configuration has been proposed for simultaneous methanol synthesis, cyclohexane dehydrogenation and hydrogen production. This reactor configuration is a membrane thermally coupled reactor which is composed of three sides for methanol synthesis, cyclohexane dehydrogenation and hydrogen production. Methanol synthesis takes place in the exothermic side that supplies the necessary heat for the endothermic dehydrogenation of cyclohexane reaction. Selective permeation of hydrogen through the Pd/Ag membrane is achieved by co-current flow of sweep gas through the permeation side. A steady-state heterogeneous model of the two fixed beds predicts the performance of this configuration. A theoretical investigation has been performed in order to evaluate the optimal operating conditions and enhancement of methanol, benzene and hydrogen production in a membrane thermally coupled reactor. The co-current mode is investigated and the optimization results are compared with corresponding predictions for a conventional (industrial) methanol fixed bed reactor operated at the same feed conditions. The differential evolution (DE), an exceptionally simple evolution strategy, is applied to optimize this reactor considering the mole fractions of methanol, benzene and hydrogen in permeation side as the main objectives. The simulation results have been shown that there are optimum values of initial molar flow rate of exothermic and endothermic stream, inlet temperature of exothermic, endothermic and permeation sides, and inlet pressure of exothermic side to maximize the objective function. The simulation results show that the methanol mole fraction in output of reactor is increased by 16.3% and hydrogen recovery in permeation side is 2.71 yields. The results suggest that optimal coupling of these reactions could be feasible and beneficial. Experimental proof-of-concept is needed to establish the validity and safe operation of the novel reactor.  相似文献   

9.
Improvements in the effectiveness of solid phase heat recovery and in the thermodynamic properties of metal oxides are the most important paths to achieving unprecedented thermal efficiencies of 10% and higher in non-stoichiometric solar redox reactors. In this paper, the impact of solid and gas phase heat recovery on the efficiency of a non-stoichiometric cerium dioxide-based H2O/CO2 splitting cycle realized in a solar-driven reactor are evaluated in a parametric thermodynamic analysis. Application of solid phase heat recovery to the cycling metal oxide allows for lower reduction zone operating temperatures, simplifying reactor design. An optimum temperature for metal oxide reduction results from two competing phenomena as the reduction temperature is increased: increasing re-radiation losses from the reactor aperture and decreasing heat loss due to imperfect solid phase heat recovery. Additionally, solid phase heat recovery increases the efficiency gains made possible by gas phase heat recovery.  相似文献   

10.
The metal hydride reactors are widely used in many industrial applications, for example, hydrogen storage, heat pump, thermal compression, gas separation, etc. The performance of the reactor is greatly affected by its design, which deserves careful study. Given the complicated nature of the hydride formation/decomposition processes, a series of technical issues are involved in the design of metal hydride reactors, such as primary configuration, thermal management, hydrogen transfer and mechanistic strength. These issues should be well addressed to fulfil the requirement of specific application. In this paper, the representative achievements with regards to the design issues so far were reviewed in detail, and some comments were made accordingly. It was concluded that an optimized reactor design comes from integrated considerations of numerous factors, particularly requirements for the applications and characteristics of the metal hydride system. The analytic hierarchy process was recommended for use in the selection of the optimum reactor scheme.  相似文献   

11.
In this work, a novel fluidized-bed thermally coupled membrane reactor has been proposed for simultaneous hydrogen, methanol and benzene production. Methanol synthesis is carried out in exothermic side which is a fluidized-bed reactor and supplies the necessary heat for the endothermic side. Dehydrogenation of cyclohexane is carried out in endothermic side with hydrogen-permselective Pd/Ag membrane wall. Selective permeation of hydrogen through the membrane in endothermic side is achieved by co-current flow of sweep gas through the permeation side. A steady-state fixed-bed heterogeneous model for dehydrogenation reactor and two-phase theory in bubbling regime of fluidization for methanol synthesis reactor is used to model and simulate the integrated proposed system. This reactor configuration solves some observed drawbacks of new thermally coupled membrane reactor such as internal mass transfer limitations, pressure drop, radial gradient of concentration and temperature in both sides. The proposed model has been used to compare the performance of a fluidized-bed thermally coupled membrane reactor (FTCMR) with thermally coupled membrane reactor (TCMR) and conventional methanol reactor (CR) at identical process conditions. This comparison demonstrates that fluidizing the catalytic bed in the exothermic side of reactor caused a favorable temperature profile along the FTCMR. Furthermore, the simulation results represent 5.6% enhancement in the yield of hydrogen recovery in comparison with TCMR.  相似文献   

12.
In this work biogas valorization – a renewable resource – for synthesis gas and hydrogen generation through dry reforming or tri-reforming (TR) is studied. Several Ni-based catalysts and a bimetallic Rh–Ni catalyst supported on magnesia or alumina modified with oxides like CeO2 and ZrO2 were used. For all the experiments, a synthetic biogas (molar composition: 60% CH4 and 40% CO2) was fed and the catalytic activities were measured in two different experimental facilities: a bench-scale fixed bed reactor system and a microreactor reaction system, at 1073 K and atmospheric pressure. Those catalysts which achieved high activity and stability in the fixed-bed reactor were impregnated in a microreactor to explore possible process intensification. For TR processes, different steam to carbon ratios, S/C, from 1.0 to 3.0, and O2/CH4 ratios of 0.25 and 0.50 were used. The high methane and carbon dioxide conversions reached in the fixed bed reactor were also achieved in the microreactor operating at much higher WHSV. In addition, process intensification improved catalysts stability. Physicochemical characterization of catalyst samples by ICP-OES, N2 physisorption, H2 chemisorption, TPR, SEM and XPS showed differences in chemical state, metal–support interactions, average crystallite sizes and redox properties of nickel and rhodium metal particles, indicating the importance of the morphological and surface properties of metal phases in driving the reforming activity.  相似文献   

13.
Methane decomposition into hydrogen and carbon is analyzed in a plasma reactor, with a rotating arc and different cross-sectional areas for the passing gas. This novel setup helps the arc discharge to sweep a larger fraction of the reactant which could cause a better interaction of methane molecules with plasma phase causing higher conversions. The effects of angular velocity of arc discharge, feed flow rate, and cross-sectional area for the passing gas were investigated on the reactor performance. Methane conversion increased significantly by changing the arc mode from stationary to rotating. Increasing the cross-sectional area for the passing gas causes conversion drop for stationary arc whereas a slight increase in conversion is observed for rotating arc mode. Hydrogen production rate of 100 ml/min with an energy yield of 26.8 g/kWh achieved at a methane flow rate of 150 ml/min. The residence time is estimated to be 0.2–3.9 s in the range of the present study, which is a much longer period compared to the plasma process time. Therefore, it is suggested that the mass transfer rate between the gas and plasma phase is the controlling factor for methane conversion. In this respect, an apparent reaction rate constant is derived by considering methane conversion as that fraction of gas, which is exposed to the active area of the plasma arc column.  相似文献   

14.
Thermochemical two-step water splitting using a redox system of iron-based oxides or ferrites is a promising process for producing hydrogen without CO2 emission by the use of high-temperature solar heat as an energy source and water as a chemical source. In this study, thermochemical hydrogen production by two-step water splitting was demonstrated on a laboratory scale by using a single reactor of an internally circulating fluidized bed. This involved the successive reactions of thermal-reduction (T-R) and water-decomposition (W-D). The internally circulating fluidized bed was exposed to simulated solar light from Xe lamps with an input power of 2.4-2.6 kWth for the T-R step and 1.6-1.7 kWth for the subsequent W-D step. The feed gas was switched from an inert gas (N2) in the T-R step to a gas mixture of N2 and steam in the W-D step. NiFe2O4/m-ZrO2 and unsupported NiFe2O4 particles were tested as a fluidized bed of reacting particles, and the production rate and productivity of hydrogen and the reactivity of reacting particles were examined.  相似文献   

15.
In this study, the catalytic decomposition of hydrogen iodide was theoretically and experimentally investigated in a silica-based ceramic membrane reactor to assess the reactor's suitability for thermochemical hydrogen production. The silica membranes were fabricated by depositing a thin silica layer onto the surface of porous alumina ceramic support tubes via counter-diffusion chemical vapor deposition of hexyltrimethoxysilane. The performance of the silica-based ceramic membrane reactor was evaluated by exploring important operating parameters such as the flow rates of the hydrogen iodide feed and the nitrogen sweep gas. The influence of the flow rates on the hydrogen iodide decomposition conversion was investigated in the lower range of the investigated feed flow rates and in the higher range of the sweep-gas flow rates. The experimental data agreed with the simulation results reasonably well, and both highlighted the possibility of achieving a conversion greater than 0.70 at decomposition temperature of 400 °C. Therefore, the developed silica-based ceramic membrane reactor could enhance the total thermal efficiency of the thermochemical process.  相似文献   

16.
Three-dimensional numerical simulations were performed to address the thermal management issues associated with the design of a methanol reforming microchannel reactor for the portable production of hydrogen. The design of the reactor was fundamentally related to the direct coupling of reforming and combustion reactions by performing them on opposite sides of dividing walls in a parallel flow configuration. Effective autothermal operation was achieved through a combination of microchannel reactor technology with heat exchange in a direction perpendicular to the reacting fluid flow. Computational fluid dynamics simulations and thermodynamic analysis were carried out to investigate the effect of various design parameters on the characteristics of the generation, consumption, and exchange of thermal energy within the system. The results indicated that the ability to control temperature and temperature uniformity is of great importance to the performance of the system. The degree of temperature uniformity favorably affects the autothermal operation of the reactor. Temperature uniformity of the reactor can be improved by controlling the rate of heat transfer through a variety of factors such as wall thermal conductivity, fluid velocities, and dimensions. High wall thermal conductivity would be greatly beneficial to the performance of the system and the temperature uniformity of the reactor.  相似文献   

17.
In the design of a solar thermal methane splitting reactor seeded with powder particles, care must be taken to prevent destruction of the reactor window by contact with incandescent solid particles. The method of screening the window by application of the tornado flow configuration (Int. J. Hydrogen Energy 28 (11) (2003) 1187) inside the reactor enclosure was studied experimentally by reactor flow simulation tests at room temperature. A secondary effect of the tornado flow pattern was identified during these tests. Friction between the swift jet of gas leaving the reactor enclosure in the axial direction and the surrounding relatively quiescent gas engenders a weak stream of gas along torroidal streamlines. Solid particles entrained by this secondary stream are carried towards the reactor window. An efficient gasdynamic method is described by which the above-mentioned negative effect is counteracted and eliminated. A solar reactor model of a special design was developed in order to enable demonstration of the effectiveness of the proposed method. Carbon black powder seeding tests were performed with this reactor model. Powder seeding conditions under which the reactor window is perfectly screened were determined by experiment.  相似文献   

18.
Two compact reformer configurations in the context of production of hydrogen in a fuel processing system for use in a Proton Exchange Membrane Fuel Cell (PEMFC) based auxiliary power unit in the 2–3 kW range are compared using computer-based modeling techniques. Hydrogen is produced via catalytic steam reforming of n-heptane, the surrogate for petroleum naphtha. Heat required for this endothermic reaction is supplied via catalytic combustion of methane, the model compound for natural gas. The combination of steam reforming and catalytic combustion is modeled for a microchannel reactor configuration in which reactions and heat transfer take place in parallel, micro-sized flow paths with wall-coated catalysts and for a cascade reactor configuration in which reactions occur in a series of adiabatic packed-beds, heat exchange in interconnecting microchannel heat exchangers being used to maintain the desired temperature. Size and efficiency of the fuel processor consisting of the reformer, hydrogen clean-up units and heat exchange peripherals are estimated for either case of using a microchannel and a cascade configuration in the reforming step. The respective sizes of fuel processors with microchannel and cascade configurations are 1.53 × 10−3 and 1.71 × 10−3 m3. The overall efficiency of the fuel processor, defined as the ratio of the lower heating value of the hydrogen produced to the lower heating value of the fuel consumed, is 68.2% with the microchannel reactor and 73.5% with the cascade reactor mainly due to 30% lower consumption of n-heptane in the latter. The cascade system also offers advanced temperature control over the reactions and ease of catalyst replacement.  相似文献   

19.
Methane steam reforming is the most widely used pathway for hydrogen production. In this context, the use of a fixed bed catalytic reactor with a hydrogen-selective membrane is one of the most promising technologies to produce high purity hydrogen gas. In this work, the membrane reactor three-dimensional computational fluid dynamic (CFD) model was developed to investigate the performance. In this model, methane steam reforming global kinetic model has been coupled with the CFD model using User-Defined Function (UDF). Whereas, hydrogen permeation across the membrane is implemented by introducing source and sink formulation. The CFD simulation results were compared to the experimental data, where the developed model successfully captured the experimentally observed trends. We studied the influence of the various operating parameters, as temperature, steam to carbon ratio, sweep gas flow configuration and space velocity on the overall performance. The main observation and attained optimal operation windows from the study was discussed to provide insight into the factors affecting the overall performance.  相似文献   

20.
Carbon monoxide (CO) is a gaseous pollutant with adverse effects on human health and the environment. Industrial chemical processes contribute significantly to CO accumulation in the atmosphere. One of the most important processes for controlling carbon monoxide emissions is the conversion of CO to methanol by catalytic hydrogenation. In this study, the effects of two different flow types on the rate of CO removal along a two-stage hydrogen permselective membrane reactor have been investigated. In the first configuration, fresh synthesis gas flows in the tube side of the membrane reactor co-currently with reacting material in the shell side, so that more hydrogen is provided in the first sections of the reactor. In the second configuration, fresh synthesis gas flows in the tube side of the membrane reactor counter-currently with reacting material in the shell side, so that more hydrogen is provided in the last sections of the reactor. For this membrane system, a one-dimensional dynamic plug flow model in the presence of catalyst deactivation was developed. Comparison between co-current and counter-current configurations shows that the reactor operates with higher conversion of CO and hydrogen permeation rate in the counter-current mode whereas; longer catalyst life is achieved in the co-current configuration. Enhancement of CO removal in the counter-current mode versus the co-current configuration results in an ultimate reduction in CO emissions into the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号