首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this research, an experimental investigation has been performed to give insight into the potential of biodiesel as an alternative fuel for High Speed Direct Injection (HSDI) diesel engines. The scope of this work has been broadened by comparing the combustion characteristics of diesel and biodiesel fuels in a wide range of engine loads and EGR conditions, including the high EGR rates expected for future diesel engines operating in the low temperature combustion (LTC) regime.The experimental work has been carried out in a single-cylinder engine running alternatively with diesel and biodiesel fuels. Conventional diesel fuel and neat biodiesel have been compared in terms of their combustion performance through a new methodology designed for isolating the actual effects of each fuel on diesel combustion, aside from their intrinsic differences in chemical composition.The analysis of the results has been sequentially divided into two progressive and complementary steps. Initially, the overall combustion performance of each fuel has been critically evaluated based on a set of parameters used as tracers of the combustion quality, such as the combustion duration or the indicated efficiency. With the knowledge obtained from this previous overview, the analysis focuses on the detailed influence of biodiesel on the different diesel combustion stages known ignition delay, premixed combustion and mixing controlled combustion, considering also the impact on CO and UHC pollutant emissions.The results of this research explain why the biodiesel fuel accelerates the diesel combustion process in all engine loads and EGR rates, even in those corresponding with LTC conditions, increasing its possibilities as alternative fuel for future DI diesel engines.  相似文献   

2.
Starting from the baseline of a Diesel engine, we show that with a suitable in-cylinder catalyst and well controlled injection of fuel and steam mixture during a certain period in the compression stage, a significant increase in the ideal cycle efficiency is achievable (from 67% to 78% for an initial compression ratio of 25). In such an arrangement, the fuel injection session comprises a two-stage process. In the first stage, fuel and water are injected into the hot previously compressed cylinder charge over the catalyst. Residual heat is absorbed due to a steam reforming process to produce hydrogen. The heat absorption cools the compressed mixture and enables a higher compression ratio up to the maximum allowed pressure, while the temperature of the cylinder charge remains constant. In the second stage, only fuel is injected to initiate combustion while the absorbed heat (of the first stage) is released through the hydrogen oxidation. Essentially, the absorbed heat is exploited to produce extra hydrogen fuel, which increases the cycle efficiency.  相似文献   

3.
Biodiesel as alternative fuel: Experimental analysis and energetic evaluations   总被引:10,自引:0,他引:10  
This paper presents the first results of an investigation carried out by the authors on the potentialities of biodiesel as an alternative fuel based on strategic considerations and field experiences in boilers and diesel engines.The operation of a biodiesel fuelled boiler has been checked for some months. The engines have been bench-tested and then installed on urban buses for normal operation. Distances, fuel consumption and emissions (CO2, CO, HC and NOX) have been monitored; in addition devices wear and tear, oil and air filters dirtiness and lubricant degradation have been checked.Further investigations have also been devoted to assess some environmental aspects of bio-diesel. In particular the benefit of biodiesel to the total net emission of CO2 during the whole life cycle has been studied and the net energy requirement has been evaluated.Finally, the global environmental support to the production of biodiesel has been studied according to the emergy analysis.  相似文献   

4.
In this work, we present a detailed model for the formation of soot in internal combustion engines describing not only bulk quantities such as soot mass, number density, volume fraction, and surface area but also the morphology and chemical composition of soot aggregates. The new model is based on the Stochastic Reactor Model (SRM) engine code, which uses detailed chemistry and takes into account convective heat transfer and turbulent mixing, and the soot formation is accounted for by SWEEP, a population balance solver based on a Monte Carlo method. In order to couple the gas-phase to the particulate phase, a detailed chemical kinetic mechanism describing the combustion of Primary Reference Fuels (PRFs) is extended to include small Polycyclic Aromatic Hydrocarbons (PAHs) such as pyrene, which function as soot precursor species for particle inception in the soot model. Apart from providing averaged quantities as functions of crank angle like soot mass, volume fraction, aggregate diameter, and the number of primary particles per aggregate for example, the integrated model also gives detailed information such as aggregate and primary particle size distribution functions. In addition, specifics about aggregate structure and composition, including C/H ratio and PAH ring count distributions, and images similar to those produced with Transmission Electron Microscopes (TEMs), can be obtained. The new model is applied to simulate an n-heptane fuelled Homogeneous Charge Compression Ignition (HCCI) engine which is operated at an equivalence ratio of 1.93. In-cylinder pressure and heat release predictions show satisfactory agreement with measurements. Furthermore, simulated aggregate size distributions as well as their time evolution are found to qualitatively agree with those obtained experimentally through snatch sampling. It is also observed both in the experiment as well as in the simulation that aggregates in the trapped residual gases play a vital role in the soot formation process.  相似文献   

5.
Oxides of nitrogen emissions from biodiesel-fuelled diesel engines   总被引:1,自引:0,他引:1  
Biodiesel has received, and continues to receive, considerable attention for its potential use as an augmenting fuel to petroleum diesel. Its advantages include decreased net carbon dioxide, hydrocarbon, carbon monoxide, and particulate matter emissions, and fuel properties similar to petroleum diesel for ease of use in diesel engines. Its disadvantages include poorer cold flow characteristics, lower heating values, and mostly reported higher emissions of oxides of nitrogen (NOx = NO + NO2, where NO is nitric oxide and NO2 is nitrogen dioxide). This latter disadvantage (i.e., higher emissions of oxides of nitrogen) is the focus of this review article. NOx formation mechanisms are complex and affected by several different features (e.g., size, operating points, combustion chamber design, fuel system design, and air system design) of internal combustion engines. The slight differences in properties between biodiesel and petroleum diesel fuels are enough to create several changes to system and combustion behaviors of diesel engines. Combined, these effects lead to several complex and interacting mechanisms that make it difficult to fundamentally identify how biodiesel affects NOx emissions. Instead, it is perhaps better to say that several parameters seem to most strongly influence observed differences in NOx emissions with biodiesel, thus introducing several possibilities for inconsistency in the trends. These parameters are injection timing, adiabatic flame temperature, radiation heat transfer, and ignition delay. This article provides a review of the rich literature describing these parameters, and provides additional insight into the system responses that are manifested by the use of biodiesel.  相似文献   

6.
The call for the use of biofuels which is being made by most governments following international energy policies is presently finding some resistance from car and components manufacturing companies, private users and local administrations. This opposition makes it more difficult to reach the targets of increased shares of use of biofuels in internal combustion engines. One of the reasons for this resistance is a certain lack of knowledge about the effect of biofuels on engine emissions. This paper collects and analyzes the body of work written mainly in scientific journals about diesel engine emissions when using biodiesel fuels as opposed to conventional diesel fuels. Since the basis for comparison is to maintain engine performance, the first section is dedicated to the effect of biodiesel fuel on engine power, fuel consumption and thermal efficiency. The highest consensus lies in an increase in fuel consumption in approximate proportion to the loss of heating value. In the subsequent sections, the engine emissions from biodiesel and diesel fuels are compared, paying special attention to the most concerning emissions: nitric oxides and particulate matter, the latter not only in mass and composition but also in size distributions. In this case the highest consensus was found in the sharp reduction in particulate emissions.  相似文献   

7.
The burning characteristics of a biodiesel droplet mixed with diesel or alkanes such as dodecane and hexadecane were experimentally studied in a reduced-gravity environment so as to create a spherically symmetrical flame without the influence of natural convection due to buoyancy. Small droplets on the order of 500 μm in diameter were initially injected via a piezoelectric technique onto the cross point intersected by two thin carbon fibers; these were prepared inside a combustion chamber that was housed in a drag shield, which was freely dropped onto a foam cushion. It was found that, for single component droplets, the tendency to form a rigid soot shell was relatively small for biodiesel fuel as compared to that exhibited by the other tested fuels. The soot created drifted away readily, showing a puffing phenomenon; this could be related to the distinct molecular structure of biodiesel leading to unique soot layers that were more vulnerable to oxidative reactivity as compared to the soot generated by diesel or alkanes. The addition of biodiesel to these more traditional fuels also presented better performance with respect to annihilating the soot shell, particularly for diesel. The burning rate generally follows that of multi-component fuels, by some means in terms of a lever rule, whereas the mixture of biodiesel and dodecane exhibits a somewhat nonlinear relation with the added fraction of dodecane. This might be related to the formation of a soot shell.  相似文献   

8.
The alarming rate at which the Earth’s atmosphere is getting polluted, the increased impact of global warming on the weather conditions on Earth and the stringent anti-pollution laws imposed in certain countries are among the main reasons for the search for alternatives to gasoline. Liquefied Petroleum Gas (LPG) (mainly propane) is among the many alternatives proposed to replace gasoline in the short term due to its excellent characteristics as a fuel for spark ignition (SI) engines. This paper presents a discussion on the parameters that affect the engine’s heat losses mainly during power stroke, with suggestions to minimise it. The effect of the equivalence ratio, compression ratio, spark plug location, and combustion duration at different speeds on the heat losses has been studied.  相似文献   

9.
An experimental study has been performed on the effects of injection rate shaping on the combustion process and exhaust emissions of a direct-injection diesel engine. Boot-type injections were generated by means of a modified pump-line-nozzle system, which is able to modulate the instantaneous fuel injection rate. The influence of different values of boot length and boot pressure has been evaluated by analysing the apparent rate of heat release and flame temperatures. Engine operating conditions at different rotating speed and injected fuel mass were considered in order to assess their effect on the injection rate shape.Results show how all the changes in the injection rate agree with changes in the diffusion combustion phase. Medium-load conditions presented larger increases in the dry soot emissions since the boot was longer and it was produced at lower pressure. Changes in engine speed at high load did not show major changes in the combustion evolution. Longer boots produced high soot emissions probably due to less efficient mixing conditions.  相似文献   

10.
An investigation was made to determine the effects of hydrogen enrichment of ethanol at ultra-lean operating regimes utilizing an experimental method. A 0.745 L 2-cylinder SI engine was modified to operate on both hydrogen and ethanol fuels. The study looked at part throttle, fixed RPM operation of 0%, 15%, and 30% hydrogen fuel mixtures operating in ultra-lean operating regimes. Data was collected to calculate NO and HC emissions, power, exhaust gas temperature, thermal efficiency, volumetric efficiency, brake-specific fuel consumption, and Wiebe burn fraction curves.  相似文献   

11.
内燃机的动力特性   总被引:6,自引:0,他引:6  
提出了发动机的动力持性包含发动机的动力性、适应性以及二的内在联系,在分析研究各种类型发动机共性和特殊性的基础上,给出了较为准确的动力持性计算公式,提出了动力持性的3个评价指标,建立了相应的计算方法并给了了3个指标数值的分布范围。  相似文献   

12.
Burning hydrogen in conventional internal combustion (IC) engines is associated with zero carbon-based tailpipe exhaust emissions. In order to obtain high volumetric efficiency and eliminate abnormal combustion modes such as preignition and backfire, in-cylinder direct injection (DI) of hydrogen is considered preferable for a future generation of hydrogen IC engines. However, hydrogen's low density requires high injection pressures for fast hydrogen penetration and sufficient in-cylinder mixing. Such pressures lead to chocked flow conditions during the injection process which result in the formation of turbulent under-expanded hydrogen jets. In this context, fundamental understanding of the under-expansion process and turbulent mixing just after the nozzle exit is necessary for the successful design of an efficient hydrogen injection system and associated injection strategies. The current study used large eddy simulation (LES) to investigate the characteristics of hydrogen under-expanded jets with different nozzle pressure ratios (NPR), namely 8.5, 10, 30 and 70. A test case of methane injection with NPR = 8.5 was also simulated for direct comparison with the hydrogen jetting under the same NPR. The near-nozzle shock structure, the geometry of the Mach disk and reflected shock angle, as well as the turbulent shear layer were all captured in very good agreement with data available in the literature. Direct comparison between hydrogen and methane fuelling showed that the ratio of the specific heats had a noticeable effect on the near-nozzle shock structure and dimensions of the Mach disk. It was observed that with methane, mixing did not occur before the Mach disk, whereas with hydrogen high levels of momentum exchange and mixing appeared at the boundary of the intercepting shock. This was believed to be the effect of the high turbulence fluctuations at the nozzle exit of the hydrogen jet which triggered Gortler vortices. Generally, the primary mixing was observed to occur after the location of the Mach disk and particularly close to the jet boundaries where large-scale turbulence played a dominant role. It was also found that NPR had significant effect on the mixture's local fuel richness. Finally, it was noted that applying higher injection pressure did not essentially increase the penetration length of the hydrogen jets and that there could be an optimum NPR that would introduce more enhanced mixing whilst delivering sufficient fuel in less time. Such an optimum NPR could be in the region of 100 based on the geometry and observations of the current study.  相似文献   

13.
欧洲重载柴油机排放法规及其测试方法的对比   总被引:2,自引:0,他引:2  
本文主要从适用范围、测试循环、排放限值以及测试方法等方面对欧洲重载柴油机不同阶段的排放法规作一对比。  相似文献   

14.
Two-dimensional detailed numerical simulation is performed to study syngas/air combustion under partially premixed combustion (PPC) engine conditions. Detailed chemical kinetics and transport properties are employed in the study. The fuel, a mixture of CO and H2 with a 1:1 molar ratio, is introduced to the domain at two different instances of time, corresponding to the multiple injection strategy of fuel used in PPC engines. It is found that the ratio of the fuel mass between the second injection and the first injection affects the combustion and emission process greatly; there is a tradeoff between NO emission and CO emission when varying the fuel mass ratio. The ignition zone structures under various fuel mass ratios are examined. A premixed burn region and a diffusion burn region are identified. The premixed burn region ignites first, followed by the ignition of mixtures at the diffusion burn region, and finally a thin diffusion flame is formed to burn out the remaining fuel. NO is produced mainly in the premixed burn region, and later from the diffusion burn region in mixtures close to stoichiometry, whereas unburned CO emission is mainly from the diffusion burn region. An optimization of the fuel mass in the two regions can offer a better tradeoff between NO emission and CO emission. The effects of initial temperature and turbulence on the premixed burn and diffusion burn regions are investigated.  相似文献   

15.
    
With the recent advances of direct injection (DI) technology, introducing hydrogen into the combustion chamber through DI is being considered as a viable approach to circumvent backfire and pre-ignition encountered in early generations of hydrogen engines. As part of a broader vision to develop a robust numerical model to study hydrogen spark ignition (SI) combustion in internal combustion (IC) engines, the present numerical investigation focuses on mixture preparation in a hydrogen DI SI engine. This study is carried out with a single hole injector with gaseous hydrogen injected at 100 bar injection pressure. Simulations are carried out for high and low tumble configurations and validated against optical data acquired from planar laser induced fluorescence (PLIF) measurements. Varying mesh configurations are investigated for the impact on in-cylinder mixture distribution. A particular emphasis is placed on the effect of nozzle geometry and mesh orientation near the wall. Overall, the computational model is found to predict the mixture distribution in the combustion cylinder reasonably well. The results showed that the alignment of mesh with the flow direction is important to achieve good agreement between numerical analysis and optical measurement data.  相似文献   

16.
A hydrogen fueled internal combustion engine has great advantages on exhaust emissions including carbon dioxide (CO2) emission in comparison with a conventional engine fueling fossil fuel. In addition, if it is compared with a hydrogen fuel cell, the hydrogen engine has some advantages on price, power density, and required purity of hydrogen. Therefore, they expect that hydrogen will be utilized for several applications, especially for a combined heat and power (CHP) system which currently uses diesel or natural gas as a fuel.A final goal of this study is to develop combustion technologies of hydrogen in an internal combustion engine with high efficiency and clean emission. This study especially focuses on a diesel dual fuel (DDF) combustion technology. The DDF combustion technology uses two different fuels. One of them is diesel fuel, and the other one is hydrogen in this study. Because the DDF engine is not customized for hydrogen which has significant flammability, it is concerned that serious problems occur in the hydrogen DDF engine such as abnormal combustion, worse emission and thermal efficiency.In this study, a single cylinder diesel engine is used with gas injectors at an intake port to evaluate performance swung the hydrogen DDF engine with changing conditions of amount of hydrogen injected, engine speed, and engine loads. The engine experiments show that the hydrogen DDF operation could achieve higher thermal efficiency than a conventional diesel operation at relatively high engine load conditions. However, it is also shown that pre-ignition with relatively high input energy fraction of hydrogen occurred before diesel fuel injection and its ignition. Therefore, such abnormal combustion limited amount of hydrogen injected. Fire-deck temperature was measured to investigate causal relationship between fire-deck temperature and occurrence of pre-ignition with changing operative conditions of the hydrogen DDF engine.  相似文献   

17.
HCCI (Homogeneous Charge Compression Ignition) has been touted for many years as the alternate technology of choice for future engines, preserving the inherent efficiency of CIDI (Compression Ignition Direct Injection) engines while significantly reducing emissions. The current direction for all published diesel HCCI research is mixture preparation using the direct injection – system, referred to as internal mixture formation. The benefit of internal mixture formation is that it utilizes an already available direct injection system. Direct injected diesel HCCI can be divided into two areas, early injection (early in the compression stroke) and late injection (usually after Top Dead Center (aTDC)). Early direct injection HCCI requires carefully designed fuel injector to minimize the fuel wall-wetting that can cause combustion inefficiency and oil dilution. Late direct injection HCCI requires a long ignition delay and rapid mixing rate to achieve the homogeneous mixture. The ignition delay is extended by retarding the injection timing and rapid mixing rate was achieved by combining high swirl with toroidal combustion-bowl geometry. There is a compromise between Direct Injection (DI) and HCCI combustion regimes. Even under ideal conditions, it can prove difficult to form a truly homogeneous charge, which leads to elevated emissions when compared to true homogenous charge combustion and also strongly contribute to the high sensitivity of the combustion phasing to external parameters. The alternative to the internal mixture formation is, predictably, external mixture formation. By introducing the fuel external to the combustion chamber one can use the turbulence intake process to create a homogeneous charge regardless of engine conditions. This eliminates the need for combustion system changes which were necessary for the internal mixture formation method. With this method, the combustion system remains fully optimized for direct injection and also capable of running in HCCI combustion mode with nearly ideal mixture preparation. The key to the external mixture formation with diesel fuel is proper mixture preparation.  相似文献   

18.
During the last years, the preservation of the atmospheric environment has played an increasingly important role in society. The Diesel engine can be considered an environmentally friendly engine because of its low consumption and the subsequent carbon dioxide (CO2) emissions reduction. However, in the near future it will face strong restrictive emission standards, which demand that the current nitrogen oxides (NOx) and soot emissions are halved. To comply with these restrictions new combustion concepts are emerging, such as PCCI (premixed charge compression ignition), in which the fuel burns in premixed conditions. Combustion noise is thus deteriorated and consequently end-users could be reluctant to drive vehicles powered with Diesel engines and their potential for environment preservation could be missed. In this paper, Diesel combustion is addressed through the analysis of performance, emissions and combustion noise in order to evaluate the suitability of PCCI engines for automotive applications. The results show that PCCI combustion offers great possibilities to fulfill future emission restrictions, but the engine noise is strongly deteriorated. The great sensitivity of users to this factor requires vehicle manufacturers to focus their efforts on the optimization of passive solutions for implementing the PCCI concept in passenger car and light-duty engines, even with the subsequent increase in the cost of vehicle. This aspect is less restrictive in heavy-duty engines, since the great benefits in emissions reduction compensate the deterioration of engine noise.  相似文献   

19.
A new one-dimensional approach, based on the solution of the governing equations for unsteady, reacting and compressible flows has been developed for the simulation of the hydrodynamics, the transient filtration/loading and the catalytic/NO2-assisted regeneration occurring in diesel particulate filters (DPF). The model is able to keep track of the chemical compounds, of the amount of soot transported by the flow, and it can estimate the increasing of back-pressure occurring in the exhaust system, due to the permeability variation of the porous wall and to the soot cake building up on the DPF porous surface. Further, a prediction of the oxidation of the deposited particulate induced by the Oxygen (collected in the exhaust gas), by the nitrogen dioxide (NO2), by the carbon oxide (CO) and by the hydrocarbons (HC) converted along the diesel oxidation catalysts (DOC) is given.  相似文献   

20.
分析均质充量压缩着火的特点,国外将均质充量压缩着火方式应用于往复式发动机中的研究现状,阐述燃料系统的设计,并探讨在我国开展均质充量压缩着火研究工作的必要性和方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号