首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rational design of non-precious-metal bifunctional catalysts of oxygen and hydrogen evolution reactions that generate a high current density and stability at low over potentials is of great significance in the field of water electrolysis. Herein, we report a facile and controllable method for the in-situ growth of urchin-like FeOOH–NiOOH catalyst on Ni foam (FeOOH–NiOOH/NF). X-ray photoelectron spectroscopy confirms that the proportion of Ni and Fe species with high valence state gradually increase with the extension of growth time. Electrochemical studies have shown that the optimized FeOOH–NiOOH/NF-24 h and −12 h catalysts demonstrate excellent electrochemical activity and stability in oxygen/hydrogen evolution reactions. Moreover, the cell voltage is reduced around 0.15 V at high current density (0.5–1.0 A cm−2) as compared to the state-of the art RuO2/NF(+)||Pt–C/NF(−) system, far better than most of the previously reported catalysts. The cost analyst revealed that using FeOOH–NiOOH/NF catalyst as both electrodes could potentially reduce the price of H2 around 7% compared with traditional industrial electrolyzers. These excellent electrocatalytic properties can be attributed to the unique urchin-like structure and the synergy between Ni and Fe species, which can not only provide more active sites and accelerate electron transfer, but also promote electrolyte transport and gas emission.  相似文献   

2.
Bimetallic Ni–Fe phosphide electrocatalysts were in-situ synthesized through direct phosphorization of metal salts on carbon cloth (CC). The Fe dopant remarkably enhances the OER performance of Ni2P in alkaline medium through the electronic structure modulation of Ni. The (Fe0.5Ni0.5)2P/CC electrode, composed of uniform films coated on carbon fibers, delivers a low overpotential of 260 mV with a small Tafel slope of 45 mV·dec−1 at the current density of 100 mA cm−2, outperforming most reported non-noble electrocatalysts and commercial RuO2 electrocatalyst. The (Fe0.5Ni0.5)2P/CC also displays superior electrochemical stability at high current density. An appropriate Fe dopant level facilitates the in-situ transformation of Ni–Fe phosphides into active NiFeOOH during alkaline OER. This work simplifies the synthesis procedure of metal phosphides.  相似文献   

3.
The development of extremely active bifunctional non-noble electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is pivotal for water splitting but remains challenging. Herein, self-supported Ni–Fe–Sn electrocatalysts were fabricated on nickel foam (NF) through a simple and facile pulse electrodeposition process. Under optimal conditions, the prepared Ni–Fe–Sn electrocatalysts exhibited excellent bifunctional properties in alkaline medium and required ultralow overpotentials of only 27 and 201 mV for HER and OER, respectively, to reach the current density of 10 mA cm?2. Importantly, the same Ni–Fe–Sn electrocatalyst can be assembled as the anode and the cathode in a two-electrode system. It demanded a fairly low applied voltage of 1.55, 1.72, and 1.87 V to produce 10, 50, and 100 mA cm?2, respectively, and exhibited excellent long-term stability. The excellent electrocatalytic water splitting performance of the Ni–Fe–Sn film was mainly associated with its intrinsic catalytic activity derived from the modulation of the electronic structures among Ni, Fe, and Sn by using the appropriate atomic ratio of Ni: Fe: Sn.  相似文献   

4.
The development of cost-effective bifunctional catalysts with excellent performance and good stability is of great significance for overall water splitting. In this work, NiFe layered double hydroxides (LDHs) nanosheets are prepared on nickel foam by hydrothermal method, and then Ni2P(O)–Fe2P(O)/CeOx nanosheets are in situ synthesized by electrodeposition and phosphating on NiFe LDHs. The obtained self-supporting Ni2P(O)–Fe2P(O)/CeOx exhibit excellent catalytic performances in alkaline solution due to more active sites and fast electron transport. When the current density is 10 mA cm?2, the overpotential of hydrogen evolution reaction and oxygen evolution reaction are 75 mV and 268 mV, respectively. In addition, driven by two Ni2P(O)–Fe2P(O)/CeOx electrodes, the alkaline battery can reach 1.45 V at 10 mA cm?2.  相似文献   

5.
By increasing demand for hydrogen and oxygen gas for energy and industrial applications, designing a cheap, high-efficiency, and bifunctional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) seems necessary. For this purpose Ni–Mo–Fe as a bifunctional electrocatalyst was synthesized by one-step electrodeposition. From this electrocatalyst with optimal composition and current density, a small overpotential of 65, 161 mV for delivering 10, 100 mA/cm2 on HER in alkaline media was achieved. As-fabricated electrode exhibited 344,408 mV for delivering 10, 100 mA/cm2 in OER. Furthermore, this electrocatalyst shows high stability and negligible degradation in overpotential for HER and OER under long term stability tests in alkaline media. The notable function of As-fabricated Ni–Mo–Fe is due to the synergism effect between Ni, Mo, and Fe element and binder-free structure. Owing to the high-performance and high-stability of Ni–Mo–Fe electrocatalyst under Hydrogen and Oxygen evolution reactions is a candidate for industrial uses in the alkaline electrolyzer.  相似文献   

6.
The usage of active electrocatalysts is a useful approach to accelerate the kinetics of electrochemical reactions and to enhance the efficiency of water splitting. To fabricate active electrocatalysts, the creation of new structures that can be easily constructed has always been a research interest. Ni–Fe based alloys are generally known as active OER catalyst. However, in this study, a novel Ni–Fe micro/nano urchin-like structure is reported to be active for both HER and OER. This is the first report of the fabrication of this morphology by a fast, one-step, and affordable electrodeposition method as an efficient HER/OER electrocatalyst. The optimized Ni–Fe coating on Cu substrate demonstrated promising HER activity with low overpotentials of ?124 and ?243 mV at the current densities of ?10 and ?100 mA cm?2, respectively. Moreover, the fabricated Ni–Fe urchin-like catalyst is highly active toward OER, requiring overpotentials of only 292 and 374 mV to deliver 10 and 100 mA cm?2. The unique structure of the synthesized coating with an abundant number of micro/nano-scale cones is suggested to play a vital role in the superior HER/OER activity of the catalyst. This article introduces a cost-effective method for the fabrication of a novel urchin-like Ni–Fe alloy as a highly active bifunctional water splitting electrocatalyst.  相似文献   

7.
Design of inexpensive and highly efficient bifunctional electrocatalyst is paramount for overall water splitting. In this study, amorphous Ni–Fe–P alloy was successfully synthesized by one-step direct-current electrodeposition method. The performance of Ni–Fe–P alloy as a bifunctional electrocatalyst toward both hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) was evaluated in 30 wt% KOH solution. It was found that Ni–Fe–P alloy exhibits excellent HER and OER performances, which delivers a current density of 10 mA cm?2 at overpotential of ~335 mV for HER and ~309 mV for OER with Tafel slopes of 63.7 and 79.4 mV dec?1, respectively. Moreover, the electrolyzer only needs a cell voltage of ~1.62 V to achieve 10 mA cm?2 for overall water splitting. The excellent electrocatalytic performance of Ni–Fe–P alloy is attributed to its electrochemically active constituents, amorphous structure, and the conductive Cu Foil.  相似文献   

8.
Fabrication of multicomponent materials is the most effective strategy to develop high-performance multifunctional catalysts. In this work, a series of bimetallic Fe–Co chalcogenophosphates were facilely prepared and used as bifunctional water electrolysis catalysts. The results have shown that the obtained catalysts showed high performances for hydrogen and oxygen evolution reactions, and overall water splitting. For the optimum catalyst, only 260 and 365 mV of overpotential for HER and OER, and 1.59 V of cell voltage for water splitting was needed respectively in 1 M KOH when 10 mA cm?2 of current density was reached. High stability and Faraday efficiency were also obtained, and the obtained results confirm that the catalyst is competitive in application in water electrolysis.  相似文献   

9.
The graphene oxide-poly (p-phenylene diamine) (GP) composite is synthesized through in-situ polymerization of p-phenylene diamine on GO sheets and used as an efficient support material for electrodeposition of Ni and Mn. The resulting GP/Ni–Mn catalyst shows high catalytic activity, stability and durability for methanol electrooxidation. The surface area of GP composite is calculated to be about 28% and 36% higher than GO and PpPDA, respectively. In addition, combining Ni and Mn demonstrated some synergetic effect for methanol electrooxidation. The electrochemical active surface area of GP/Ni–Mn is about 1.625 cm2, which is much higher than GP/Ni and GP/Mn. GP/Ni–Mn nanocomposite presented 87.3% of the peak current after 5 h and almost 83.16% of the maximum current for 500 cycles. The excellent characteristics of this composite are attributed to high surface area, high electrochemical active surface area and fine distribution of metallic particles on the support material.  相似文献   

10.
The development of electrode materials with simple preparation, favorable price, excellent electrocatalytic activity, and stability are some of the most important issues in the field of electrochemistry. Herein, we prepared Ni–Co/Ni–Co–O–P cotton flower like on a copper sheet (CS) by a convenient, efficient, and scalable electrodeposition method. The Ni–Co/Ni–Co–O–P was employed as effective binder free electrode material in two different applications such as electrocatalytic water splitting and acetaminophen (APAP) sensor. Remarkably, the Ni–Co/Ni–Co–O–P@CS exhibits low overpotentials of 310 and 90 mV at 10 mA cm?2 for oxygen and hydrogen evolution reactions in alkaline media, respectively. Besides, the Ni–Co/Ni–Co–O–P@CS || Ni–Co/Ni–Co–O–P@CS couple needs a low cell voltage of 1.62 V to achieve a current density of 10 mA cm?2, and its potential change is negligible after 20 h of continuous operation. Furthermore, Ni–Co/Ni–Co–O–P displays good electrochemical sensing performance toward APAP with a high sensitivity of 803.74 μA mM?1cm?2, low limit of detection of 0.16 μM, a wide linear range of 0.05 mM–3 mM, and a fast response time of 3.3 s. This work proposes a simple approach for synthesis of Ni–Co/Ni–Co–O–P as an efficient electrode material for water splitting and APAP sensing.  相似文献   

11.
The synthesis of cost-effective and high-performance electrocatalysts for water splitting is the main challenge in electrochemical hydrogen production. In this study, we adopted a high throughput method to prepare bi-metallic catalysts for oxygen/hydrogen evolution reactions (OER/HER). A series of Ni–Mo alloy electrocatalysts with tunable compositions were prepared by a simple co-sputtering method. Due to the synergistic effect between Ni and Mo, the intrinsic electrocatalytic activity of the Ni–Mo alloy electrocatalysts is improved, resulting in excellent HER and OER performances. The Ni90Mo10 electrocatalyst shows the best HER performance, with an extremely low overpotential of 58 mV at 10 mA cm?2, while the Ni40Mo60 electrocatalyst shows an overpotential of 258 mV at 10 mA cm?2 in OER. More significantly, the assembled Ni40Mo60//Ni90Mo10 electrolyzer only needs a cell voltage of 1.57 V to reach 10 mA cm?2 for overall water splitting.  相似文献   

12.
This work demonstrates a facile Nb2O5-decorated electrocatalyst to prepare cost-effective Ni–Fe–P–Nb2O5/NF and compared HER & OER performance in alkaline media. The prepared electrocatalyst presented an outstanding electrocatalytic performance towards hydrogen evolution reaction, which required a quite low overpotential of 39.05 mV at the current density of ?10 mA cm?2 in 1 M KOH electrolyte. Moreover, the Ni–Fe–P–Nb2O5/NF catalyst also has excellent oxygen evolution efficiency, which needs only 322 mV to reach the current density of 50 mA cm?2. Furthermore, its electrocatalytic performance towards overall water splitting worked as both cathode and anode achieved a quite low potential of 1.56 V (10 mA cm?2).  相似文献   

13.
Developing an effective and low-cost bifunctional electrocatalyst for both OER and HER to achieve overall water splitting is remaining a challenge to meet the needs of sustainable development. Herein, an electroless plating method was employed to autogenous growth of ultrathin Ni–Fe2B nanosheet arrays on nickel foam (NF), in which the whole liquid phase reduction reaction took no more than 20 min and did not require any other treatments such as calcination. In 1.0 M KOH electrolyte, the resulted Ni–Fe2B ultrathin nanosheet displayed a low overpotential of 250 mV for OER and 115 mV for HER to deliver a current density of 10 mA cm?2, and both OER and HER activities remained stable after 26 h stability testing. Further, the couple electrodes composed of Ni–Fe2B could afford a current density of 10 mA cm?2 towards overall water splitting at a cell voltage of 1.64 V in 1.0 M KOH and along with excellent stability for 26 h. The outstanding electrocatalytic activities can be attributed to the synergistic effect of electron-coupling across Ni and Fe atoms and active sites exposed by large surface area. The effective combination of low cost and high electrocatalytic activity brings about a promising prospect for Ni–Fe2B nanosheet arrays in the field of overall water splitting.  相似文献   

14.
Design and synthesis of cost-effective electrocatalysts with remarkable activity and stability is highly desirable for renewable energy devices. Herein, we have successfully constructed sheet-like CoMoO4–Co(OH)2 and CoMoP–CoP arrays on nickel foam (NF) through chemical etching ZIF-67 arrays and phosphorization in sequence. Series CoMoO4–Co(OH)2/NF as anode and CoMoP–CoP/NF as cathode showed excellent electrocatalytic activity and stability in alkali water splitting, where the combined catalysts only need 1.67 V cell voltage to drive 10 mA cm?2 and obtain robust high current stability at 500 mA cm?2 for 110 h with almost no attenuation. In addition, using CoMoP–CoP/NF as the cathode of a Zn–H2O cell can provide a power density of 11.5 mW cm?2 and a stable 170 h for simultaneous H2 and electricity generation. The excellent performance of the system is attributed to the unique sheet-like array morphology of combined catalysts providing large surface area and rich pore structure conducive to electrolyte diffusion and gas emission, as well as the synergies between the different components providing more catalytic active sites.  相似文献   

15.
A search for efficient, durable, large-area, and economic catalyst material for low-cost production of hydrogen and oxygen is currently a high priority in the field of electrocatalysis (EC). In view of this, a cost-effective, earth abundant, highly stable, Pt free, and large-area (8 cm × 8 cm) bifunctional Ni–B electrocatalyst is reported via simple and economic SILAR method. A highly porous surface of Ni–B film with high surface wettability indicated better electrochemical water-splitting properties for the films and is obtained at 100 cycles. A Low over-potential value to obtain HER (49 mV) and OER (340 mV) at 10 mA/cm2 current suggested that they are comparable to the well-known Pt and RuO electrodes in alkaline medium (1M KOH), respectively. In actual water-splitting setup having Ni–B film (as cathode) and stainless steel (as anode), the hydrogen production of 612 ml/h is obtained at constant potential, which was enhanced by 18% i.e., 726 ml/h when a Ni–B film as both cathode and anode electrode was used. Both the electrodes are highly stable for over 15 days and interestingly they showed 7% increment in the EC performance.  相似文献   

16.
It is of great significance to explore and design low-cost and efficient electrocatalysts for the storage and conversion of intermittent renewable resources to clean hydrogen by water splitting. Herein, the amorphous Ni–Fe–S electrocatalysts are rapidly synthesized on Cu sheets and Ni foams using the simple electrodeposition method. After optimizing the S concentration, the Ni–Fe–S electrocatalysts exhibit the simultaneously boosted hydrogen and oxygen evolution reaction performances compared to the as-synthesized Ni–Fe and Ni. In addition, the Ni–Fe–S electrocatalysts as the bifunctional electrodes only require a cell voltage of 1.584 V (on Ni foam) and 1.705 V (on Cu sheet) to reach 10 mA/cm2 with excellent stability in the electrocatalytic activity and surface properties. The results exhibit that the enhanced electrocatalytic activity can be attributed to the role of the doped S in formatting the amorphous structure, improving the hydrophilic and aerophobic properties, optimizing the electronic structure as well as enhancing the electrochemically active sites. This work might offer a new insight into the design of the cheap and highly efficient electrodes for generation of hydrogen by water splitting.  相似文献   

17.
The development of efficient and economical cathode, operating at ambient temperature and neutral pH is a crucial challenge for microbial electrolysis cell (MEC) to become commercialize hydrogen production technology. In the present work, eight different electrodes are prepared by the electroplating of Ni, Ni–Co and Ni–Co–P on two base metals i.e., Stainless Steel 316 and Copper separately to use as cathode in MEC. Electrodeposited cathode materials have been characterized by XRD, XPS, FESEM, EDX and linear voltammetry. The fabricated cathodes show higher corrosion stability with improved electro-catalytic performance for the hydrogen production in the MECs as compared to the bare cathodes (SS316 and Cu). Data obtained from linear voltammetry and MEC experiments show that developed cathode possess four times higher intrinsic catalytic activity in comparison to bare cathode. Electrodeposited cathodes are intensively examined in membrane-less MEC, operating under applied voltage of 0.6 V in batch mode at 30 ± 2 °C temperature, in neutral pH with acetate as substrate and activated sludge as inoculum. Ni–Co–P electrodeposit on Stainless Steel 316 cathode gives maximum hydrogen production rate of 4.2 ± 0.5 m3(H2)m−3d−1, columbic efficiencies 96.9 ± 2%, overall hydrogen recovery 90.3 ± 4%, overall energy efficiency 241.2 ± 5%, volumetric current density 310 ± 5 Am−3. The net energy recovery and COD removal are 4.25 kJ/gCOD and 61%, respectively. Prepared cathodes show stable performance for continuous 5 batch cycle operations in MEC.  相似文献   

18.
The binary NiIr coatings as novel and effective catalysts were electrochemically prepared on a Ni-modified carbon felt electrode (C/Ni–NiIr) in view of their possible application as cathode materials for the alkaline water electrolysis. The surface morphology and chemical composition of the electrodes were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) techniques. Their hydrogen evolution activity was assessed by electrochemical techniques. It was found that, the preparation of NiIr co-deposits on the Ni-modified C substrate enhances the hydrogen evolution activity. The electrodes have wide space, which is an advantage for diffusion of ions and hydrogen bubbles through inner zones and reduction of diffusion resistance. The high hydrogen evolution activity of the C/Ni–NiIr electrode was mainly attributed to the finer surface structure, high surface area and the higher numbers of the catalytically active centers.  相似文献   

19.
20.
With the serious intensification of energy shortage and greenhouse effect, people begin to look for the sustainable energy sources to replace fossil energy sources. Herein, self-supporting expanded graphite sheet (SSEGS) was developed as an ideal catalyst support through electrochemically intercalating flexible graphite sheet in alkaline solution. Electroless deposition was employed to synthesize Ni–Cu–P alloy on SSEGS and then an amorphous NiFe hydroxide/Ni–Cu–P/SSEGS (NiFe–OH/Ni–Cu–P/SSEGS) composite catalyst was further constructed through electrodeposition. Benefitting from the unique structural advantage of SSEGS and the synergistic effect between two amorphous Ni-based materials (Ni–Cu–P alloy and NiFe–OH), the resulting electrode exhibited superior bifunctional electrocatalytic performance in 1 M KOH. For H2 evolution reaction and O2 evolution reaction, the NiFe–OH/Ni–Cu–P/SSEGS composite catalyst could reach 10 mA cm−2 at low overpotentials of 75 and 240 mV, respectively. Remarkably, the two-electrode system driven by NiFe–OH/Ni–Cu–P/SSEGS as the anode and cathode could afford 10 mA cm−2 at a low cell voltage of 1.56 V vs. RHE. And after the 12 h stability test, the cell voltage at 10 mA cm−2 increased by only 7 mV, indicating that the two-electrode system had excellent stability. The preparation of NiFe–OH/Ni–Cu–P/SSEGS material with superior bifunctional electrocatalytic performance has a significance influence to the development and expansion of hydrogen production technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号