首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Green hydrogen produced from intermittent renewable energy sources is a key component on the way to a carbon neutral planet. In order to achieve the most sustainable, efficient and cost-effective solutions, it is necessary to match the dimensioning of the renewable energy source, the capacity of the hydrogen production and the size of the hydrogen storage to the hydrogen demand of the application.For optimized dimensioning of a PV powered hydrogen production system, fulfilling a specific hydrogen demand, a detailed plant simulation model has been developed. In this study the model was used to conduct a parameter study to optimize a plant that should serve 5 hydrogen fuel cell buses with a daily hydrogen demand of 90 kg overall with photovoltaics (PV) as renewable energy source. Furthermore, the influence of the parameters PV system size, electrolyser capacity and hydrogen storage size on the hydrogen production costs and other key indicators is investigated. The plant primarily uses the PV produced energy but can also use grid energy for production.The results show that the most cost-efficient design primarily depends on the grid electricity price that is available to supplement the PV system if necessary. Higher grid electricity prices make it economically sensible to invest into higher hydrogen production and storage capacity. For a grid electricity price of 200 €/MWh the most cost-efficient design was found to be a plant with a 2000 kWp PV system, an electrolyser with 360 kW capacity and a hydrogen storage of 575 kg.  相似文献   

2.
《Journal of power sources》2001,96(1):168-172
An integrated renewable energy (RE) system for powering remote communication stations and based on hydrogen is described. The system is based on the production of hydrogen by electrolysis whereby the electricity is generated by a 10 kW wind turbine (WT) and 1 kW photovoltaic (PV) array. When available, the excess power from the RE sources is used to produce and store hydrogen. When not enough energy is produced from the RE sources, the electricity is then regenerated from the stored hydrogen via a 5 kW proton exchange membrane fuel cell system. Overview results on the performances of the WT, PV, and fuel cells system are presented.  相似文献   

3.
A numerical method was developed for optimising solar–hydrogen energy system to supply renewable energy for typical household connected with the grid. The considered case study involved household located in Diyala Governorate, Iraq. The solar–hydrogen energy system was designed to meet the desired electrical load and increase the renewable energy fraction using optimum fuel cell capacity. The simulation process was conducted by MATLAB based on the experimental data for electrical load, solar radiation and ambient temperature at a 1-min time-step resolution. Results demonstrated that the optimum fuel cell capacity was approximately 2.25 kW at 1.8 kW photovoltaic power system based on the average of the daily energy consumption of 6.8 kWh. The yearly renewable energy fraction increased from 31.82% to 95.82% due to the integration of the photovoltaic system with a 2.25 kW fuel cell used as a robust energy storage unit. In addition, the energy supply, which is the economic aspect for the optimum system, levelised electricity cost by approximately $0.195/kWh. The obtained results showed that the proposed numerical analysis methodology offers a distinctive property that can be used effectively to optimise hybrid renewable energy systems.  相似文献   

4.
The increase of renewable share in the energy generation mix makes necessary to increase the flexibility of the electricity market. Thus, fossil fuel thermal power plants have to adapt their electricity production to compensate these fluctuations. Operation at partial load means a significant loss of efficiency and important reduction of incomes from electricity sales in the fossil power plant. Among the energy storage technologies proposed to overcome these problems, Power to Gas (PtG) allows for the massive storage of surplus electricity in form of hydrogen or synthetic natural gas. In this work, the integration of a Power to Gas system (50 MWe) with fossil fuel thermal power plants (500 MWe) is proposed to reduce the minimum complaint load and avoid shutdowns. This concept allows a continuous operation of power plants during periods with low demand, avoiding the penalty cost of shutdown. The operation of the hybrid system has been modelled to calculate efficiencies, hydrogen and electricity production as a function of the load of the fossil fuel power plant. Results show that the utilisation of PtG diminishes the specific cost of producing electricity between a 20% and 50%, depending on the framework considered (hot, warm and cold start-up). The main contribution is the reduction of the shutdown penalties rather than the incomes from the sale of the hydrogen. At the light of the obtained results, the hybrid system may be implemented to increase the cost-effectiveness of existing fossil fuel power plants while adapting the energy mix to high shares of variable renewable electricity sources.  相似文献   

5.
This study addresses economic aspects of introducing renewable technologies in place of fossil fuel ones to mitigate greenhouse gas emissions. Unlike for traditional fossil fuel technologies, greenhouse gas emissions from renewable technologies are associated mainly with plant construction and the magnitudes are significantly lower. The prospects are shown to be good for producing the environmentally clean fuel hydrogen via water electrolysis driven by renewable energy sources. Nonetheless, the cost of wind- and solar-based electricity is still higher than that of electricity generated in a natural gas power plant. With present costs of wind and solar electricity, it is shown that, when electricity from renewable sources replaces electricity from natural gas, the cost of greenhouse gas emissions abatement is about four times less than if hydrogen from renewable sources replaces hydrogen produced from natural gas. When renewable-based hydrogen is used in a fuel cell vehicle instead of gasoline in a IC engine vehicle, the cost of greenhouse gas emissions reduction approaches the same value as for renewable-based electricity only if the fuel cell vehicle efficiency exceeds significantly (i.e., by about two times) that of an internal combustion vehicle. It is also shown that when 6000 wind turbines (Kenetech KVS-33) with a capacity of 350 kW and a capacity factor of 24% replace a 500-MW gas-fired power plant with an efficiency of 40%, annual greenhouse gas emissions are reduced by 2.3 megatons. The incremental additional annual cost is about $280 million (US). The results provide a useful approach to an optimal strategy for greenhouse gas emissions mitigation.  相似文献   

6.
Hydrogen will become a dominant energy carrier in the future and the efficiency and lifetime cost of its production through water electrolysis is a major research focus. Alongside efforts to offer optimum solutions through plant design and sizing, it is also necessary to develop a flexible virtualised replica of renewable hydrogen plants, that not only models compatibility with the “plug-and-play” nature of many facilities, but that also identifies key elements for optimisation of system operation. This study presents a model for a renewable hydrogen production plant based on real-time historical and present-day datasets of PV connected to a virtualised grid-connected AC microgrid comprising different technologies of batteries, electrolysers, and fuel cells. Mathematical models for each technology were developed from chemical and physical metrics of the plant. The virtualised replica is the first step toward the implementation of a digital twin of the system, and accurate validation of the system behaviour when updated with real-time data. As a case study, a solar hydrogen pilot plant consisting of a 60 kW Solar PV, a 40 kW PEM electrolyser, a 15 kW LIB battery and a 5 kW PEM fuel cell were simulated and analysed. Two effective operational factors on the plant's performance are defined: (i) electrolyser power settings to determine appropriate hydrogen production over twilight periods and/or overnight and (ii) a user-defined minimum threshold for battery state of charge to prevent charge depletion overnight if the electrolyser load is higher than its capacity. The objective of this modelling is to maximise hydrogen yield while both loss of power supply probability (LPSP) and microgrid excess power are minimised. This analysis determined: (i) a hydrogen yield of 38–39% from solar DC energy to hydrogen energy produced, (ii) an LPSP <2.6 × 10?4 and (iii) < 2% renewable energy lost to the grid as excess electricity for the case study.  相似文献   

7.
《Journal of power sources》2006,162(2):757-764
The combination of an electrolyzer and a fuel cell can provide peak power control in a decentralized/distributed power system. The electrolyzer produces hydrogen and oxygen from off-peak electricity generated by the renewable energy sources (wind turbine and photovoltaic array), for later use in the fuel cell to produce on-peak electricity. An issue related to this system is the control of the hydrogen loop (electrolyzer, tank, fuel cell). A number of control algorithms were developed to decide when to produce hydrogen and when to convert it back to electricity, most of them assuming that the electrolyzer and the fuel cell run alternatively to provide nominal power (full power). This paper presents a complete model of a stand-alone renewable energy system with hydrogen storage controlled by a dynamic fuzzy logic controller (FLC). In this system, batteries are used as energy buffers and for short time storage. To study the behavior of such a system, a complete model is developed by integrating the individual sub-models of the fuel cell, the electrolyzer, the power conditioning units, the hydrogen storage system, and the batteries. An analysis of the performances of the dynamic fuzzy logic controller is then presented. This model is useful for building efficient peak power control.  相似文献   

8.
Power-to-Gas (PtG) is a grid-scale energy storage technology by which electricity is converted into gas fuel as an energy carrier. PtG utilizes surplus renewable electricity to generate hydrogen from Solid-Oxide-Cell, and the hydrogen is then combined with CO2 in the Sabatier process to produce the methane. The transportation of methane is mature and energy-efficient within the existing natural gas pipeline or town gas network. Additionally, it is ideal to make use of the reverse function of SOC, the Solid-Oxide-Fuel-Cell, to generate electricity when the grid is weak in power. This study estimated the cost of building a hypothetical 100-MW PtG power plant with energy storage and power generation capabilities. The emphasis is on the effects of SOC cost, fuel cost and capacity factor to the Levelized Cost of Energy of the PtG plant. The net present value of the plant is analyzed to estimate the lowest affordable contract price to secure a positive present value. Besides, the plant payback period and CO2 emission are estimated.  相似文献   

9.
This article examines the additional profit that can be achieved with the integrated operation of an on-site electrolyser, a hydrogen tank, a photovoltaic system, and a wind power plant based on Hungarian data from 2019. The results of the optimisation show that the system economically reduces the volatility of weather-dependent renewable production, so there is a promising demand-side management potential in coordination. We found that the operating profit is highest in April at EUR 19,416, 18,932 in July, and lowest at EUR 17,075 in January. The production curve of photovoltaic capacities is better matched to fuel demand, so increasing the share of solar energy results in lower balancing activity but higher profits. Increasing the size of the hydrogen storage and electrolyser, with constant hydrogen demand and prices, will cause a convergent increase in profits, however above a 10 kg storage capacity or 350 kW electrolyser capacity there is no substantial profit increase. In the case of the economically optimal asset size, there is a slight competition between the electricity market and the hydrogen distribution activity. The choice between the two activities depends on current electricity and hydrogen prices and the cost of unmet hydrogen demand.  相似文献   

10.
This article proposes a calculation methodology that starts from the demand calculation to supply a fleet bus with renewable hydrogen based on the electrolysis process until the energetic, economic, and environmental analyses, involving all the processes of the productive chair. Also considering the dynamic behaviour of the following hydrogen processes: production, storage, and use. The simplified scheme of the proposed system configuration to be studied consists of the use of alternative and renewable sources of energy (solar-wind-biogas) to generate electrical energy in order to produce hydrogen from electrolysis of the water, which is stored in its gaseous state and subsequently redirected to a filling station to be used as vehicle fuel in buses. The results show that to feed one bus the hybrid system generates an average of 78,110 kWh/month with an installed capacity of 1101.905 kW, producing 1209.90 kgH2/month through the electrolysis process from water. The results also show a range of electricity generation costs between 1.130 and 0.123 US$/kWh and H2 production between 0.963 and 0.110 US$/kWh. Concluding that the application of renewable energies to produce hydrogen and electricity for the public transport sector is an attractive alternative in the future throughout the country, because the proposed system is technically, economically and ecologically viable.  相似文献   

11.
The increasing use of renewable power sources for distributed generation (DG) has made the application of storage systems a necessity to ensure the continuous supply. This paper analyzes technically and economically an autonomous sodium hypochlorite plant using a renewable energy source and a hydrogen storage system in the Western Region of Paraguay. In this region, there is abundant underground brackish water to produce industrial and energetic hydrogen. In addition, an isolated photovoltaic (PV) system feeds with electricity an electrolyzer, used for sodium hypochlorite production, and the brackish water and freshwater pumping systems. The hydrogen and fuel cell are used as backup system in the operation of the electrolyzer. Preliminary results show that hydrogen stored during the day can increase hypochlorite production by up to 31%. The PV solar system surplus can supply the demand of an off-grid community near the plant. The results show that the plant's return on investment (ROI) is 7 years.  相似文献   

12.
Three aspects of producing hydrogen via renewable electricity sources are analyzed to determine the potential for solar and wind hydrogen production pathways: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices. For renewables to produce hydrogen at $2 kg−1, using electrolyzers available in 2004, electricity prices would have to be less than $0.01 kWh−1. Additionally, energy requirements for hydrogen refueling stations are in excess of 20 GWh/year. It may be challenging for dedicated renewable systems at the filling station to meet such requirements. Therefore, while plentiful resources exist to provide clean electricity for the production of hydrogen for transportation fuel, challenges remain to identify optimum economic and technical configurations to provide renewable energy to distributed hydrogen refueling stations.  相似文献   

13.
The Combined Hydrogen, Heat and Power (CHHP) system consists of a molten carbonate fuel cell, DFC300. DFC300 consumes biogas, and produces electricity and hydrogen. The high temperature flue gas can be recovered for useful purposes. During the hydrogen recovery process, the anode exhaust gas (37.1% H2O, 45.9% CO2, 5.7% CO, and 11.2% H2) is sent through a water gas shift (WGS) reactor to increase the hydrogen and carbon dioxide composition, and then water is removed in a vapor–liquid separator. The remaining hydrogen and carbon dioxide mixture gas is separated using a 2-adsorber pressure swing adsorption unit under 1379 kPa. Resulting hydrogen can achieve 99.99% purity, and it can be stored in composite hydrogen storage tanks pressurized at 34,474 kPa. Hydrogen is produced at a rate of 2.58 kg/h. The produced hydrogen is filled into transportable hydrogen cylinders and trucked to a residential community 7.5 km away from the CHHP site. The community is powered by fuel cells to supply electricity to approximately 51 apartments. A heat recovery unit to produce steam and hot water recovers hot air exhaust from the DFC300, having a total heating value of 405 MJ/h. The greenhouse employs a two-phase steam heating system. Hot water supply is mainly needed for the CHHP education center. DFC300 produces electricity at a maximum capacity of 280 kW. A substation is built to set up the interconnections. Power poles and power lines are built to distribute electricity to the CHHP system, the education center, and the greenhouse. The overall electricity consumption of the CHHP system is 86 kW, and the greenhouse consumes 40 kW. Therefore, an aggregate of 154 kW of power can be used to provide power to the UC Davis campus.  相似文献   

14.
Direct steam generating parabolic trough power plant is an important technology to match future electric energy demand. One of the problems related to its emergence is energy storage. Solar-to-hydrogen is a promising technology for solar energy storage. Electrolysis is among the most processes of hydrogen production recently investigated. High temperature steam electrolysis is a clean process to efficiently produce hydrogen. In this paper, steam electrolysis process using solar energy is used to produce hydrogen. A heat recovery steam generator generates high temperature steam thanks to the molten carbonate fuel cell's waste heat. The analytical study investigates the energy efficiency of solar power plant, molten carbonate fuel cell and electrolyser. The impact of waste heat utilization on electricity and hydrogen generation is analysed. The results of calculations done with MATLAB software show that fuel cell produces 7.73 MWth of thermal energy at design conditions. 73.37 tonnes of hydrogen and 14.26 GWh of electricity are yearly produced. The annual energy efficiency of electrolyser is 70% while the annual mean electric efficiency of solar power plant is 18.30%.The proposed configuration based on the yearly electricity production and hydrogen generation has presented a good performance.  相似文献   

15.
In this study, a thermodynamic and economic analysis of a synthetic fuel production facility by utilizing the hydrogenation of CO2 captured from biogas is carried out. It is aimed to produce methanol, a synthetic fuel by hydrogenation of carbon dioxide. A PEM electrolyzer driven by grid-tie solar PV modules is used to supply the hydrogen need of methanol. The CO2 is captured from biogas produced in an actual wastewater treatment plant by a water washing unit which is a method of biogas purification. The required power which is generated by PV panels, in order to produce methanol, is found to be 2923 kW. Herein, the electricity consumption of 2875 kW, which is the main part of the total electricity generation, belongs to the PEM system. As a result of the study, the daily methanol production is found to be as 1674 kg. The electricity, hydrogen and methanol production costs are found to be $ 0.043 kWh?1, $ 3.156 kg?1, and $ 0.693 kg?1, respectively. Solar availability, methanol yield from the reactor, and PEM overpotentials are significant factors effecting the product cost. The results of the study presents feasible methanol production costs with reasonable investment requirements. Moreover, the efficiency of the cogeneration plant could be increased via enriching the biogas while emissions are reduced.  相似文献   

16.
Environmental burdens associated with small scale (40 L hydrogen per minute) production of hydrogen fuel using electrolysis powered by electricity generated from stand-alone wind turbines (30 kW), stand-alone photovoltaic panels (3 kW peak) and UK grid electricity (current and future) has been undertaken. Utilization of fuel within a proton exchange membrane fuel cell passenger vehicle was included and compared to the operation of a petrol vehicle, a fuel cell vehicle fuelled with non-renewable hydrogen, and an electric (battery only) vehicle. The production of renewable hydrogen from wind energy incurs increased climate change burdens compared with extraction and processing of fossil petrol (0.09 mPt compared with 0.07 mPt). However, lower burdens for fossil fuel (1.85 mPt) and climate change (0.26 mPt) are realised by the renewable hydrogen options compared with petrol (4.44 mPt and 0.44 mPt, respectively) following utilization of the fuel due to lower emissions at end use. Utilizing a combination of renewable hydrogen fuelled vehicles and grid powered electric vehicles was considered to be a viable option for meeting UK policy ambitions.  相似文献   

17.
Hydrogen is an energy carrier which can be used for the storage of intermittent and renewable energy sources. In this paper, the general characteristics of an integrated and automated hydrogen-based auxiliary power unit (APU) are presented. A PEM water electrolyzer (production capacity ranging from zero up to 1 Nm3 H2/h), which can be powered by a panel of photovoltaic cells, is used to produce hydrogen at day hours. Hydrogen is dried and stored in hydride reservoir tanks (the storage capacity of individual reservoirs is 1 Nm3 H2). Then hydrogen is used for the co-generation of heat and electricity at night hours using a PEM fuel cell (1 kW maximum output power). The main electrochemical and technological features of the overall system are presented. This kind of APU can potentially be used as an electric power source for domestic applications, for the production of electricity on remote sites or as a mobile hydrogen refuelling station for transport applications in urban areas.  相似文献   

18.
This paper describes the size optimization of a hybrid photovoltaic/fuel cell grid linked power system including hydrogen storage. The overall objective is the optimal sizing of a hybrid power system to satisfy the load demand of a university laboratory with an unreliable grid, with low energy cost and minimal carbon emissions. The aim is to shift from grid linked diesel power system to a clean and sustainable energy system. The optimum design architecture was established by adopting the energy-balance methods of HOMER (hybrid optimization model for electric renewables). Analysis of hourly simulations was performed to decide the optimal size, cost and performance of the hybrid system, using 22-years monthly averaged solar radiation data collected for Ambrose Alli University, Ekpoma (Lat. 6°44.3ʹN, Long. 6°4.8ʹE). The results showed that a hybrid system comprising 54.7 kW photovoltaic array, 7 kW fuel cell system, 14 kW power inverter and 3 kW electrolyzer with 8 kg hydrogen storage tank can sustainably augment the erratic grid with a very high renewable fraction of 96.7% at $0.0418/kWh. When compared with the conventional usage of grid/diesel generator system; energy cost saving of more than 88% and a return on investment of 41.3% with present worth of $308,965 can be derived in less than 3 years. The application of the optimally sized hybrid system would possibly help mitigate the rural-to-urban drift and resolve the electricity problems hindering the economic growth in Nigeria. Moreover, the hybrid system can alleviate CO2 emissions from other power generation sources to make the environment cleaner and more eco-friendly.  相似文献   

19.
Decentralization of electrical power generation using rooftop solar units is projected to develop to not only mitigate power losses along transmission and distribution lines, but to control greenhouse gases emissions. Due to intermittency of solar energy, traditional batteries are used to store energy. However, batteries have several drawbacks such as limited lifespan, low storage capacity, uncontrolled discharge when not connected to a load and limited number of charge/discharge cycles. In this paper, the feasibility of using hydrogen as a battery is analyzed where hydrogen is produced by the extra diurnal generated electricity by a rooftop household solar power generation unit and utilized in a fuel cell system to generate the required electrical power at night. In the proposed design, two rooftop concentrated photovoltaic thermal (CPVT) systems coupled with an organic Rankine cycle (ORC) are used to generate electricity during 9.5 h per day and the extra power is utilized in an electrolyzer to produce hydrogen. Various working fluids (Isobutane, R134a, R245fa and R123) are used in the ORC system to analyze the maximum feasible power generation by this section. Under the operating conditions, the generated power by ORC as well as its efficiency are evaluated for various working fluids and the most efficient working fluid is selected. The required power for the compressor in the hydrogen storage process is calculated and the number of electrolyzer cells required for the hydrogen production system is determined. The results indicate that the hybrid CPVT-ORC system produces 2.378 kW of electricity at 160 suns. Supplying 65% of the produced electricity to an electrolyzer, 0.2606 kg of hydrogen is produced and stored for nightly use in a fuel cell system. This amount of hydrogen can generate the required electrical power at night while the efficiency of electrolyzer is more than 70%.  相似文献   

20.
Power generation from wind and solar sources is growing in importance, but requires back up from fossil fuel plants, greatly compromising fossil fuel plant economics. This includes the economics of most proposed IGCC–Hypogen type plant schemes which are intended to produce hydrogen and electricity, as well as capturing CO2. IGCC–Hypogen plants, however, that are able to change the ratio of hydrogen to electricity will be able to operate at maximum capacity all of the time, switching from power generation to hydrogen production as the demand for these two forms of energy changes. Because of the need to provide power to the IGCC–Hypogen ancillaries, some hydrogen from the plant will have to be utilised to supply some of this power. A preliminary economic study examines how the plant could produce electricity and hydrogen at competitive prices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号