首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nearly 40% of the total greenhouse gases (GHGs) are emitted from the energy consumption in buildings in Japan, which should be reduced to address global warming. A hydrogen energy utilization system with renewable energy (RE) was designed by MATLAB/Simulink simulations for realizing a zero emission building (ZEB), comprising a hydrogen-producing electrolyzer, a hydrogen storage tank, fuel cell, and battery for short-term power storage with estimated specifications of 3.0 Nm3/h, 36 Nm3, 4.2 kW, and 10 kW/17 kWh, respectively. We identified a small low-rise building (total floor area: ∼1000 m2, demand: ∼5 kW) as the planned ZEB to construct and operate a bench-scale system. A 20-kW photovoltaic (PV) system was selected as the RE source. Two hydrogen production processes (constant power of 10 kW or with excess PV power) were evaluated by simulating 48-h operations on fine and cloudy days, where the former showed higher efficiency. The results with excess power on a fine day agreed well with that of actual operation, validating our simulation models. Further, the constant case was suitable for practical application.  相似文献   

2.
The increasing penetration of intermittent renewable sources, fostering power sector decarbonization, calls for the adoption of energy storage systems as an essential mean to improve local electricity exploitation, reducing the impact of distributed power generation on the electric grid. This work compares the use of hydrogen-based Power-to-Power systems, battery systems and hybrid hydrogen-battery systems to supply a constant 1 MWel load with electricity locally generated by a photovoltaic plant. A techno-economic optimization model is set up that optimizes the size and annual operation of the system components (photovoltaic field, electrolyzer, hydrogen storage tanks, fuel cell and batteries) with the objective of minimizing the annual average cost of electricity, while guaranteeing an imposed share of local renewable self-generation. Results show that, with the present values of investment costs and grid electricity prices, the installation of an energy storage system is not economically attractive by itself, whereas the installation of PV panels is beneficial in terms of costs, so that the baseline optimal solution consists of a 4.2 MWp solar field capable to self-generate 33% of the load annually. For imposed shares of self-generation above 40%, decoupling generation and consumption becomes necessary. The use of batteries is slightly less expensive than the use of hydrogen storage systems up to a 92% self-generation rate. Above this threshold, seasonal storage becomes predominant and hybrid storage becomes cheaper than batteries. The sale of excess electricity is always important to support the plant economics, and a sale price reduction sensibly impacts the results. Hydrogen storage becomes more competitive when the need for medium and long terms energy shift increases, e.g. in case of having a cap on the available PV capacity.  相似文献   

3.
We investigated the generating efficiency and pollutant emissions of a four-stroke spark-ignition gas engine generator operating on biogas–hydrogen blends of varying excess air ratios and hydrogen concentrations. Experiments were carried out at a constant engine speed of 1200 rpm and a constant electric power output of 10 kW. The experimental results showed that the peak values of generating efficiency, maximum cylinder pressure, and NOx emissions were elevated at an excess air ratio of around 1.2 as the hydrogen concentration was increased. CO2 emissions decreased as the excess air ratio and hydrogen concentration increased, due to lean-burn conditions and hydrogen combustion. An efficiency per NOx emissions ratio (EPN) was defined to consider the relationship between the generating efficiency and NOx emissions. A maximum EPN value of 0.7502 was obtained with a hydrogen concentration of 15%, for an excess air ratio of 2.0. At this EPN value, the NOx and CO2 emissions were 39 ppm and 1678.32 g/kWh, respectively, and the generating efficiency was 29.26%. These results demonstrated that the addition of hydrogen to biogas enabled the effective generation of electricity using a gas engine generator through lean-burn combustion.  相似文献   

4.
A technico-economic analysis based on integrated modeling, simulation, and optimization approach is used in this study to design an off grid hybrid solar PV/Fuel Cell power system. The main objective is to optimize the design and develop dispatch control strategies of the standalone hybrid renewable power system to meet the desired electric load of a residential community located in a desert region. The effects of temperature and dust accumulation on the solar PV panels on the design and performance of the hybrid power system in a desert region is investigated. The goal of the proposed off-grid hybrid renewable energy system is to increase the penetration of renewable energy in the energy mix, reduce the greenhouse gas emissions from fossil fuel combustion, and lower the cost of energy from the power systems. Simulation, modeling, optimization and dispatch control strategies were used in this study to determine the performance and the cost of the proposed hybrid renewable power system. The simulation results show that the distributed power generation using solar PV and Fuel Cell energy systems integrated with an electrolyzer for hydrogen production and using cycle charging dispatch control strategy (the fuel cell will operate to meet the AC primary load and the surplus of electrical power is used to run the electrolyzer) offers the best performance. The hybrid power system was designed to meet the energy demand of 4500 kWh/day of the residential community (150 houses). The total power production from the distributed hybrid energy system was 52% from the solar PV, and 48% from the fuel cell. From the total electricity generated from the photovoltaic hydrogen fuel cell hybrid system, 80.70% is used to meet all the AC load of the residential community with negligible unmet AC primary load (0.08%), 14.08% is the input DC power for the electrolyzer for hydrogen production, 3.30% are the losses in the DC/AC inverter, and 1.84% is the excess power (dumped energy). The proposed off-grid hybrid renewable power system has 40.2% renewable fraction, is economically viable with a levelized cost of energy of 145 $/MWh and is environmentally friendly (zero carbon dioxide emissions during the electricity generation from the solar PV and Fuel Cell hybrid power system).  相似文献   

5.
Hydrogen will become a dominant energy carrier in the future and the efficiency and lifetime cost of its production through water electrolysis is a major research focus. Alongside efforts to offer optimum solutions through plant design and sizing, it is also necessary to develop a flexible virtualised replica of renewable hydrogen plants, that not only models compatibility with the “plug-and-play” nature of many facilities, but that also identifies key elements for optimisation of system operation. This study presents a model for a renewable hydrogen production plant based on real-time historical and present-day datasets of PV connected to a virtualised grid-connected AC microgrid comprising different technologies of batteries, electrolysers, and fuel cells. Mathematical models for each technology were developed from chemical and physical metrics of the plant. The virtualised replica is the first step toward the implementation of a digital twin of the system, and accurate validation of the system behaviour when updated with real-time data. As a case study, a solar hydrogen pilot plant consisting of a 60 kW Solar PV, a 40 kW PEM electrolyser, a 15 kW LIB battery and a 5 kW PEM fuel cell were simulated and analysed. Two effective operational factors on the plant's performance are defined: (i) electrolyser power settings to determine appropriate hydrogen production over twilight periods and/or overnight and (ii) a user-defined minimum threshold for battery state of charge to prevent charge depletion overnight if the electrolyser load is higher than its capacity. The objective of this modelling is to maximise hydrogen yield while both loss of power supply probability (LPSP) and microgrid excess power are minimised. This analysis determined: (i) a hydrogen yield of 38–39% from solar DC energy to hydrogen energy produced, (ii) an LPSP <2.6 × 10?4 and (iii) < 2% renewable energy lost to the grid as excess electricity for the case study.  相似文献   

6.
Naval Material Research Laboratory (NMRL), based on the firm confidence of her core competence on material development, started an ambitious program on development of fuel cells for various Defense and non-Defense application in early nineties. The primary emphasis of this program is to develop phosphoric acid fuel cell (PAFC) based power plants integrated with hydrogen generators along with other accessories. In the process of development, it is understood that online generation of hydrogen from a liquid fuel is the key to success. Methanol, a liquid fuel, can be reformed easily with few side products and the resultant hydrogen rich reformer gas can be directly fed to a PAFC. Such configuration keeps the basic system simple and free of complicated filters and instrumentation.NMRL has developed a series of catalytic burners with high efficiency as the primary heat transfer source from the hot catalytic surface is based on conduction rather than convection as is done normally. Vaporizer is a coiled arrangement and reformer is hollow sections filled with Cu/Al2O3/ZnO catalyst, and the same is integrated with catalytic burners. Such arrangement is modular in nature and each reformer has hydrogen generation capacity of 90 lpm and start-up time is around half an hour. Modular design of reformer reactor allow them to used in different capacity plants such as a 2 kW plant configured with a reformer reactor with two vaporizer and 15 kW plant configured with seven nos. of reformer reactors and seven no. of vaporizer. The waste heat of the fuel cell and the same from the reformer burner flue is used to meet most of the reformer heat load. The catalytic burner of the reformer burns both waste hydrogen and methanol with very little excess air. PAFC being tolerant to CO (up to 1%) can be directly operated with the hydrogen rich reformer gas and the lean gas from the fuel cell is burnt into the reformer system.The raw DC output power is converted into either 100 VDC or 220 V single phase, 50 Hz sinusoidal AC power through appropriate power electronics. These configurations give overall efficiency of the plant to around 35-40 % based on LHV of Hydrogen. A battery bank is also incorporated to cater for the plant start-up and other temporary auxiliary power which get charged from the fuel cell output. Such configuration lead to the development of methanol reformer integrated PAFC based power plants of capacity ranging from 2 kW to 15 kW. The system is designed for continuous power production in the field. These plants are suitable for remote area, distributed power generation and application such as battery charging, domestic load etc.  相似文献   

7.
This study investigated the pollutant emission reduction and demand-side management potential of 16 photovoltaic (PV) systems installed across the US during 1993 and 1994. The US Environmental Protection Agency (EPA) and 11 electric power companies sponsored the project. This article presents results of analyses of each PV system's ability to offset power plant emissions of sulfur dioxide (SO2), nitrogen oxides (NOx), carbon dioxide (CO2) and particulates and to provide power during peak demand hours for the individual host buildings and peak load hours for the utility. The analyses indicate a very broad range in the systems' abilities to offset pollutant emissions, due to variation in the solar resource available and the emission rates of the participating utilities' load following generation plants. Each system's ability to reduce building peak demand was dependent on the correlation of that load to the available solar resource. Most systems operated in excess of 50% of their capacity during building peak load hours in the summer months, but well below that level during winter peak hours. Similarly, many systems operated above 50% of their capacity during utility peak load hours in the summer months, but at a very low level during winter peak hours.  相似文献   

8.
The current study deals with a potential solution for the replacement of fossil fuel based energy resources with a sustainable solar energy resource. Electrical energy demand of a small community is investigated where a floating photovoltaic system and integrated hydrogen production unit are employed. Data are taken from Mumcular Dam located in Aegean Region of Turkey. PvSyst software is used for the simulation purposes. Furthermore, the obtained results are analyzed in the HOMER Pro Software. Photovoltaic (PV) electricity provides the required load and excess electricity to be used in the electrolyzer and to produce hydrogen. Saving lands by preventing their usage in conventional PV farms, saving the water due to reducing evaporation, and compensating the intermittent availability of solar energy are among the obtained results of the study for the considered scenario. Stored hydrogen is used to compensate the electric load through generating electricity by fuel cell. Floating PV (FPV) system decreases the water evaporation of water resources due to 3010 m2 shading area. FPV and Hydrogen Systems provides %99.43 of the electricity demand without any grid connection or fossil fuel usage, where 60.30 MWh/year of 211.94 MWh/year produced electricity is consumed by electric load at $0.6124/kWh levelized cost of electricity (LCOE).  相似文献   

9.
Integrating sector coupling technologies into Hydrogen (H2) based hybrid renewable energy systems (HRES) is becoming a promising way to create energy prosumers, despite the very little research work being done in this largely unexplored field. In this paper, a sector coupling strategy (building and transportation) is developed and applied to a grid-connected PV/battery/H2 HRES, to maximise self-sufficiency for a University campus and to produce power and H2 for driving electric tram in Ouargla, Algeria. A multi-objective size optimization problem is solved as a single objective problem using the ε-constraint method, in which the cost of energy (COE) is defined as the main objective function to be minimized, while both loss of power supply probability (LPSP) and non-renewable usage (NRU) are defined as constraints. Particle swarm optimization and HOMER software are then employed for simulation and optimization purposes. Prior to the two scenarios investigated, a sensitivity study is performed to determine the effects of H2 demand by tram and NRU on the techno-economic feasibility of the proposed system, followed by a new reliability factor introduced in the optimization, namely loss of H2 supply probability (LHSP). The results of the first scenario show that by setting NRUmax = 100%, the system without H2 provides the best solution with COE of 0.016 $/kWh that reaches grid parity and has 13% NRU. However, by setting NRUmax = 1% in the second scenario, an optimized configuration consisting of grid/PV/Electrolyzer/Fuel cell/Storage tank is obtained, which has 0% NRU and COE of 0.1 $/kWh. In the second scenario, it is also observed that an increased number of trams (i.e. increased H2 demands) causes a significant reduction in LHSP, COE, NRU and CO2 emissions. It is thus concluded that the grid/PV combination is the optimal choice for the studied system when considering economic aspects. However, taking into account the growing requirements of future energy systems, grid-connected PV with H2 will be the best solution.  相似文献   

10.
Cross utilization of photovoltaic/wind/battery/fuel cell hybrid-power-system has been demonstrated to power an off-grid mobile living space. This concept shows that different renewable energy sources can be used simultaneously to power off-grid applications together with battery and hydrogen energy storage options. Photovoltaic (PV) and wind energy are used as primary sources and a fuel cell is used as backup power. A total of 2.7 kW energy production (wind and PV panels) along with 1.2 kW fuel cell power is supported with 17.2 kWh battery and 15 kWh hydrogen storage capacities. Supply/demand scenarios are prepared based on wind and solar data for Istanbul. Primary energy sources supply load and charge batteries. When there is energy excess, it is used to electrolyse water for hydrogen production, which in turn can either be used to power fuel cells or burnt as fuel by the hydrogen cooker. Power-to-gas and gas-to-power schemes are effectively utilized and shown in this study. Power demand by the installed equipment is supplied by batteries if no renewable energy is available. If there is high demand beyond battery capacity, fuel cell supplies energy in parallel. Automatic and manual controllable hydraulic systems are designed and installed to increase the photovoltaic efficiency by vertical axis control, to lift up & down wind turbine and to prevent vibrations on vehicle. Automatic control, data acquisition, monitoring, telemetry hardware and software are established. In order to increase public awareness of renewable energy sources and its applications, system has been demonstrated in various exhibitions, conferences, energy forums, universities, governmental and nongovernmental organizations in Turkey, Austria, United Arab Emirates and Romania.  相似文献   

11.
Hydrogen refueling infrastructures with on-site production from renewable sources are an interesting solution for assuring green hydrogen with zero CO2 emissions. The main problem of these stations development is the hydrogen cost that depends on both the plant size (hydrogen production capacity) and on the renewable source.In this study, a techno-economic assessment of on-site hydrogen refueling stations (HRS), based on grid-connected PV plants integrated with electrolysis units, has been performed. Different plant configurations, in terms of hydrogen production capacity (50 kg/day, 100 kg/day, 200 kg/day) and the electricity mix (different sharing of electricity supply between the grid and the PV plant), have been analyzed in terms of electric energy demands and costs.The study has been performed by considering the Italian scenario in terms of economic streams (i.e. electricity prices) and solar irradiation conditions.The levelized cost of hydrogen (LCOH), that is the more important indicator among the economic evaluation indexes, has been calculated for all configurations by estimating the investment costs, the operational and maintenance costs and the replacement costs.Results highlighted that the investment costs increase proportionally as the electricity mix changes from Full Grid operation (100% Grid) to Low Grid supply (25% Grid) and as the hydrogen production capacity grows, because of the increasing in the sizes of the PV plant and the HRS units. The operational and maintenance costs are the main contributor to the LCOH due to the annual cost of the electricity purchased from the grid.The calculated LCOH values range from 9.29 €/kg (200 kg/day, 50% Grid) to 12.48 €/kg (50 kg/day, 100% Grid).  相似文献   

12.
Solar photovoltaic (PV) hybrid system technology is a hot topic for R&D since it promises lot of challenges and opportunities for developed and developing countries. The Kingdom of Saudi Arabia (KSA) being endowed with fairly high degree of solar radiation is a potential candidate for deployment of PV systems for power generation. Literature indicates that commercial/residential buildings in KSA consume an estimated 10–45% of the total electric energy generated. In the present study, solar radiation data of Dhahran (East-Coast, KSA) have been analyzed to assess the techno-economic viability of utilizing hybrid PV–diesel–battery power systems to meet the load requirements of a typical commercial building (with annual electrical energy demand of 620,000 kW h). The monthly average daily solar global radiation ranges from 3.61 to 7.96 kW h/m2. NREL's HOMER software has been used to carry out the techno-economic viability. The simulation results indicate that for a hybrid system comprising of 80 kWp PV system together with 175 kW diesel system and a battery storage of 3 h of autonomy (equivalent to 3 h of average load), the PV penetration is 26%. The cost of generating energy (COE, US$/kW h) from the above hybrid system has been found to be 0.149 $/kW h (assuming diesel fuel price of 0.1 $/L). The study exhibits that for a given hybrid configuration, the operational hours of diesel generators decrease with increase in PV capacity. The investigation also examines the effect of PV/battery penetration on COE, operational hours of diesel gensets for a given hybrid system. Emphasis has also been placed on unmet load, excess electricity generation, percentage fuel savings and reduction in carbon emissions (for different scenarios such as PV–diesel without storage, PV–diesel with storage, as compared to diesel-only situation), cost of PV–diesel–battery systems, COE of different hybrid systems, etc.  相似文献   

13.
In this study, biogas power production and green hydrogen potential as an energy carrier are evaluated from biomass. Integrating an Organic Rankine Cycle (ORC) to benefit from the waste exhaust gases is considered. The power obtained from the ORC is used to produce hydrogen by water electrolysis, eliminate the H2S generated during the biogas production process and store the excess electricity. Thermodynamic and thermoeconomic analyses and optimization of the designed Combined Heat and Power (CHP) system for this purpose have been performed. The proposed study contains originality about the sustainability and efficiency of renewable energy resources. System design and analysis are performed with Engineering Equation Solver (EES) and Aspen Plus software. According to the results of thermodynamic analysis, the energy and exergy efficiency of the existing power plant is 28.69% and 25.15%. The new integrated system's energy, exergy efficiencies, and power capacity are calculated as 41.55%, 36.42%, and 5792 kW. The total hydrogen production from the system is 0.12412 kg/s. According to the results of the thermoeconomic analysis, the unit cost of the electricity produced in the existing power plant is 0.04323 $/kWh. The cost of electricity and hydrogen produced in the new proposed system is determined as 0.03922 $/kWh and 0.181 $/kg H2, respectively.  相似文献   

14.
The advantage of PV–thermal hybrid systems is their high total efficiency. By using concentrating hybrid systems, the cost per energy produced is reduced due to simultaneous heat and electricity production and a reduced PV cell area. In this article, the optical efficiency of a water-cooled PV–thermal hybrid system with low concentrating aluminium compound parabolic concentrators is discussed. The system was built in 1999 in Älvkarleby, Sweden (60.5° N, 17.4° E) with a geometric concentration ratio of C=4 and 0.5 kWp electric power. The yearly output is 250 kWh of electricity per square metre solar cell area and 800 kWh of heat at low temperatures per square metre solar cell area. By using numerical data from optical measurements of the components (glazing, reflectors, and PV cells) the optical efficiency, ηopt, of the PV–CPC system has been determined to be 0.71, which is in agreement with the optical efficiency as determined from thermal and electrical measurements. Calculations show that optimised antireflection-treated glazing and reflectors could further increase the electric power yield.  相似文献   

15.
Rapid development of portable electronics promotes the R&D of micro/miniature power sources with high energy density. The high mass energy density and zero emission characteristic of hydrogen show a huge potential to develop powerful portable hydrogen-based power sources. A miniature hydrogen catalytic combustion powered thermoelectric generator (CCP-TEG) is designed and tested in detail. An outstanding catalytic core is prepared with a newly proposed method on the basis of combining H2PtCl6 solution and foamed transition metal. Such catalytic core is demonstrated to provide high combustion temperature, complete combustion, and sufficient heat flux for power generation. Several parameters including input power, equivalent ratio, cooling mode, and load resistance are investigated to clarify their influences on the combustion temperature, electric power, and various efficiencies (combustion, heat collection, TE, and overall efficiencies) of the hydrogen CCP-TEG. The developed hydrogen CCP-TEG is able to generate an electric power of 20.7 W with an overall efficiency of 2.04%, filling the research gap of generating large electric power (>10 W) with sufficiently high overall efficiency (>2%) in the research field of hydrogen CCP-TEG. The generated electric power and overall efficiency are much higher than those in previous hydrogen CCP-TEGs. The prepared catalytic core remains excellent functionality after running for 30 h, and the combustion temperature is as high as 918 K, which ensures the sufficiently high temperature difference for powerful power generation. This study is conducted to illustrate a concrete method on developing a powerful hydrogen CCP-TEG, and to identify further research directions.  相似文献   

16.
When planning large-scale 100% renewable energy systems (RES) for the year 2050, the system capacity is usually oversized for better supply-demand matching of electrical energy since solar and wind resources are highly intermittent. This causes excessive excess energy that is typically dissipated, curtailed, or sold directly. The public literature shows a lack of studies on the feasibility of using this excess for country-scale co-generation. This study presents the first investigation of utilizing this excess to generate green hydrogen gas. The concept is demonstrated for Jordan using three solar photovoltaic (PV), wind, and hybrid PV-wind RESs, all equipped with Lithium-Ion battery energy storage systems (ESSs), for hydrogen production using a polymer electrolyte membrane (PEM) system. The results show that the PV-based system has the highest demand-supply fraction (>99%). However, the wind-based system is more favorable economically, with installed RES, ESS, and PEM capacities of only 23.88 GW, 2542 GWh, and 20.66 GW. It also shows the highest hydrogen annual production rate (172.1 × 103 tons) and the lowest hydrogen cost (1.082 USD/kg). The three systems were a better option than selling excess energy directly, where they ensure annual incomes up to 2.68 billion USD while having payback periods of as low as 1.78 years. Furthermore, the hydrogen cost does not exceed 2.03 USD/kg, which is significantly lower than the expected cost of hydrogen (3 USD/kg) produced using energy from fossil fuel-based systems in 2050.  相似文献   

17.
Although efficiency of photovoltaic (PV) modules is usually specified under standard test conditions (STC), their operation under real field conditions is of great importance for obtaining accurate prediction of their efficiency and power output. The PV conversion process, on top of the instantaneous solar radiation, depends also on the modules' temperature. Module temperature is in turn influenced by climate conditions as well as by the technical characteristics of the PV panels. Taking into consideration the extended theoretical background in the field so far, the current study is focused on the investigation of the temperature variation effect on the operation of commercial PV applications based on in-situ measurements at varying weather conditions. Particularly, one year outdoor data for two existing commercial (m-Si) PV systems operated in South Greece, i.e. an unventilated building-integrated (81 kWp) one and an open rack mounted (150 kWp) one, were collected and evaluated. The examined PV systems were equipped with back surface temperature sensors in order to determine module and ambient temperatures, while real wind speed measurements were also obtained for assessing the dominant effect of local wind speed on the PVs' thermal loss mechanisms. According to the results obtained, the efficiency (or power) temperature coefficient has been found negative, taking absolute values between 0.30%/°C and 0.45%/°C, with the lower values corresponding to the ventilated free-standing frames.  相似文献   

18.
The construction of p-n type heterojunction is an effective way to enhance the efficiency of photocatalytic hydrogen evolution. In this work, Co3O4/CeO2 p-n heterojunction was construct by a simple hydrothermal method. This heterojunction mainly uses the internal electric field formed and accelerate the separation of electrons and holes in the opposite direction. In addition, according to SEM and TEM characterization, it was found that the granular cobalt oxide nanoparticles prepared by in-situ hydrothermal method were firmly and uniformly dispersed in cerium oxide, which effectively increased the active sites of hydrogen evolution. And combined with the BET results, it shows that the growth of cobalt oxide effectively increases the specific surface area and increases the active sites for hydrogen evolution. By exploring the hydrogen evolution capacity of different ratios of the complex, the test results showed that in all different ratios of the catalyst, CC-0.16 showed the best performance, and the hydrogen production efficiency reached 2298.52 μmol g−1h−1, which was 71 times that of nanobelt CeO2 and 2.72 times that of Co3O4. According to the characterization results, the photocatalytic water splitting mechanism of the p-n heterojunction was proposed, and the charge transfer mechanism in the process was discussed in depth.  相似文献   

19.
In the wake of rising cost of oil and fears of its exhaustion coupled with increased pollution, the governments world-wide are deliberating and making huge strides to promote renewable energy sources such as solar–photovoltaic (solar–PV) and wind energy. Integration of diesel systems with hybrid wind–PV systems is pursued widely to reduce dependence on fossil-fuel produced energy and to reduce the release of carbon gases that cause global climate change. Literature indicates that commercial/residential buildings in the Kingdom of Saudi Arabia (KSA) consume an estimated 10–40% of the total electric energy generated. The study reviews research work carried out world-wide on wind farms and solar parks. The work also analyzes wind speed and solar radiation data of East-Coast (Dhahran), KSA, to assess the technical and economic potential of wind farm and solar PV park (hybrid wind–PV–diesel power systems) to meet the load requirements of a typical commercial building (with annual electrical energy demand of 620,000 kWh). The monthly average wind speeds range from 3.3 to 5.6 m/s. The monthly average daily solar global radiation ranges from 3.61 to 7.96 kWh/m2. The hybrid systems simulated consist of different combinations of 100 kW wind machines, PV panels, supplemented by diesel generators. NREL (and HOMER Energy's) HOMER software has been used to perform the techno-economic study. The simulation results indicate that for a hybrid system comprising of 100 kW wind capacity (37 m hub-height) and 40 kW of PV capacity together with 175 kW diesel system, the renewable energy fraction (with 0% annual capacity shortage) is 36% (24% wind + 12% PV). The cost of generating energy (COE, $/kWh) from this hybrid wind–PV–diesel system has been found to be 0.154 $/kWh (assuming diesel fuel price of 0.1$/L). The study exhibits that for a given hybrid configuration, the number of operational hours of diesel generators decreases with increase in wind farm and PV capacity. Attention has also been focused on wind/PV penetration, un-met load, excess electricity generation, percentage fuel savings and reduction in carbon emissions (relative to diesel-only situation) of different hybrid systems, cost break-down of wind–PV–diesel systems, COE of different hybrid systems, etc.  相似文献   

20.
An electrolyzer/fuel cell energy storage system is a promising alternative to batteries for storing energy from solar electric power systems. Such a system was designed, including a proton-exchange membrane (PEM) electrolyzer, high-pressure hydrogen and oxygen storage, and a PEM fuel cell. The system operates in a closed water loop. A prototype system was constructed, including an experimental PEM electrolyzer and combined gas/water storage tanks. Testing goals included general system feasibility, characterization of the electrolyzer performance (target was sustainable 1.0 A/cm2 at 2.0 V per cell), performance of the electrolyzer as a compressor, and evaluation of the system for direct-coupled use with a PV array. When integrated with a photovoltaic array, this type of system is expected to provide reliable, environmentally benign power to remote installations. If grid-coupled, this system (without PV array) would provide high-quality backup power to critical systems such as telecommunications and medical facilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号