首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A microchannel reactor with porous surface for hydrogen production can enhance fluid flow and heat transfer characteristics. To improve the fluid flow and heat transfer characteristics of a microreactor with a porous surface, a numerical model is proposed based on fractal geometry. The porous surface in the microreactor is fabricated using a layered powder sintering and dissolution method with NaCl particles, in which two sizes of NaCl particles (180–280 μm and 280–450 μm) are utilized. For the construction of the porous surface, these two types of fabricated surfaces are measured and the fractal dimensions are characterized as 1.905 and 1.849, respectively. Subsequently, a numerical model based on fractal geometry for a microchannel reactor with porous surface is developed to study the fluid flow and heat transfer characteristics. This is followed by the microchannel reactor fabrication and experimental testing. Both model calculation and experimental results demonstrate that a microreactor with a porous surface can enhance the heat transfer performances compared with that with a non-porous surface, and that a microchannel reactor fabricated with larger NaCl particles (280–450 μm) has better heat transfer characteristics compared with a microreactor with small NaCl particles (180–280 μm). Thus, the developed numerical model based on fractal geometry can be used to accurately predict the fluid flow and heat transfer characteristics of the microreactor for hydrogen production.  相似文献   

2.
To improve the hydrogen production performance of microreactors, the selective laser melting method was proposed to fabricate the porous metals as catalyst supports with different pore structures, porosities, and materials. The influence of the porous structures on the molecule distribution after passing through the porous metals was analyzed by molecular dynamics simulation. The developed porous metals were then used as catalyst supports in a methanol steam reforming microreactor for hydrogen production. Our results show that the porosity of the porous metal had significantly influence on the catalyst infiltration and the reaction process of hydrogen production. A lower degree of catalyst infiltration of the porous metal was obtained with lower porosity. A copper layer-coated stainless-steel porous metal with a staggered structure and gradient porosity of 80%–60% exhibited much larger methanol conversion and H2 flow rate due to its better heat and mass transfer characteristic. Methanol conversion and H2 flow rates could reach 97% and 0.62 mol/h, respectively. Finally, it was found that the experimental results were in good agreement with the simulation results.  相似文献   

3.
In this study, a laser micro-milling technique was introduced into the fabrication process of surface microchannels with different geometries and dimensions on the porous copper fiber sintered felts (PCFSFs). The PCFSFs with surface microchannels as catalyst supports were then used to construct a new type of laminated methanol steam reforming microreactor for hydrogen production. The microstructure morphology, pressure drop, velocity and permeability of PCFSF with surface microchannels were studied. The effect of surface microchannel shape (rectangular, stepped, and polyline) and catalyst loading amount on the reaction performance of methanol steam reforming microreactor for hydrogen production was further investigated. Our results show that the PCFSF with rectangular microchannels demonstrated a lower pressure drop, higher average velocity and higher permeability compared to the stepped and polyline microchannel. Furthermore, the PCFSF with rectangular microchannels also exhibited the highest methanol conversion and H2 flow rate. The best reaction performance of methanol steam reforming microreactor for hydrogen production was obtained using PCFSF with rectangular microchannels when 0.5 g catalyst was loaded.  相似文献   

4.
In the present work, we report the results of a series of experiments for the hydrogen production via steam reforming of methanol with Cu–SiO2 porous catalyst coated on the internal walls of a micro-reactor with parallel micro-passages. The catalyst was prepared by coating copper and silica nanoparticles on the internal surface of the microchannel via convective flow boiling heat transfer, followed by a calcination procedure at 973 K and therefore, the catalyst does not require any supportive material, which in turn reduced the complexity and cost of the preparation. The experiments were conducted at reactant flow rates of 0.1–0.9 lit/min, operating temperatures of 523–673 K, catalyst loading of 0.25 gr to 1.25 gr and at heat flux value of 500 kW/m2. Results of the experiments showed that the methanol conversion can reach 97% at catalyst loading of 1.25 gr. It was also found that with an increase in the gas hourly space velocity (GHSV) of the reactants, the methanol conversion decreases, which was attributed to the decrease in the residence time, the suppression in diffusion of reactants into the pores of the catalyst, and also the decrease in the average film temperature of the reactor. The highest methanol conversion was obtained at gas hourly space velocity of 24,000 ml/(gr.hr) and T = 773 K and for molar ratio of methanol to water of 0.1. The molar ratio of methanol to water also influenced the thermal response of the reactor such that the surface temperature profile of the micro-reactor was more decreased at low methanol/water molar ratios.  相似文献   

5.
Methanol microreactors are of much application value in mobile hydrogen production (HP) thanks to their tiny volume, flexibility and safety and all that. Microchannels, the core of a reactor, provide a site and heat supply for the reaction. In this paper, a microchannel with multi-scale structures, i.e. submicro structure, corrugated structure, fin structure and matrix structure, is designed. Then the influence mechanism of these structures on the hydrogen production of methanol reforming is studied. Specifically, the influences of microstructures like submicro and corrugated structures on the performance of the catalyst in the microchannel as well as the influence of fin structure and matrix structure on the heat and mass transfer performance of the channel are studied. From the experimental research on the methanol conversion rate and H2 flow rate of the microchannel with multi-scale structures, the influence rule of different structures on the HP performance of the channel is summarized. The experimental results show that these multi-scale structures not only improve the loading of the catalyst of the microchannel, but also its heat and mass transfer, which increases the methanol conversion rate of the microchannel with multi-scale structures by 33% and its H2 flow rate by 0.266 mol/h.  相似文献   

6.
In this study, the porous Cu-Al fiber sintered felt (PCAFSF) was fabricated by low temperature solid-phase sintering method. The laminated PCAFSF as the catalyst support was used for cylindrical methanol steam reforming microreactor for hydrogen production. The two-layer impregnation method was employed to coat the Cu/Zn/Al/Zr catalyst on the PCAFSF. The material composition, specific surface area and catalyst loading of PCAFSF were also measured. The effect of the fiber material, surface morphology and porosity on the reaction performance of methanol steam reforming microreactor for hydrogen production was further investigated. Our results show that the PCAFSF demonstrated much higher methanol conversion and H2 flow rate compared to the porous Cu fiber sintered felt (PCFSF) and porous Al fiber sintered felt (PAFSF) having the same porosity. Furthermore, the rough PCAFSF showed much higher methanol conversion and H2 flow rate compared to the smooth PCAFSF. In case of the PCAFSF, the methanol conversion and H2 flow rate were increased with the decrease of Cu fiber weight and the increase of Al fiber weight. The best reaction performance of microreactor for hydrogen production was obtained using the three layer PCAFSFs with 80% porosity and 1.12 g Cu fiber/1.02 g Al fiber.  相似文献   

7.
Methanol steam reforming has been used for in-situ hydrogen production and supply for proton exchange membrane fuel cell (PEMFC), while its power density and energy efficiency still needs to be improved. Herein, we present a novel methanol steam reforming microreactor based on the stacked wave sheets and copper foam for highly efficient hydrogen production. The structural of stacked wave sheets and copper foam, and their roles in the microreactor are described, methanol catalytic combustion is adopted to supply heat for methanol steam reforming reaction and enables the microreactor to work automatically. For catalyst carrier, a fractal body-centered cubic model is established to study the flow characteristics and chemical reaction performances of the copper foam with coated catalyst layer. Both simulation and experimental results showed that the reformate flowrate increases with the increasing of microreactor layers and methanol solution flowrate, the discrepancies of methanol conversion between simulation and experimental tests are less than 7%. Experimental results demonstrated that the reformate flowrate of 1.0 SLM can be achieved with methanol conversion rate of 65%, the output power of the microreactor is 159 W and power density is 395 W/L. The results obtained in this study indicates that stacked wave sheets and copper foam can uniform the reactant flow and improve the hydrogen production performances.  相似文献   

8.
Heterogeneous catalytic fixed bed usually suffers from severe limitations of mass and heat transfer. These disadvantages limit reformers to a low efficiency of catalyst utilization. Three catalyst activity distributions have been applied to force the reactor temperature profile to be near isothermal operation for maximization of methanol conversion. A plate-type reactor has been developed to investigate the influence of catalyst activity distribution on methanol steam reforming. Cold spot temperature gradients are observed in the temperature profile along the reactor axis. It has been experimentally verified that reducing cold spot temperature gradients contributes to the improvement of the catalytic hydrogen production. The lowest cold spot temperature gradient of 3 K is obtained on gradient catalyst distribution type A. This is attributed to good characteristics of local thermal effect. Low activity at the reactor inlet with gradual rise along with the reactor flow channel forms the optimal activity distribution. Hydrogen production rate of 161.3 L/h is obtained at the methanol conversion of 93.1% for the gradient distribution type A when the inlet temperature is 543 K.  相似文献   

9.
Methanol steam reforming (MSR) is an attractive option for in-situ hydrogen production and to supply for transportation and industrial applications. This paper presents a novel thermally autonomous MSR microreactor that uses silicon carbide (SiC) honeycomb ceramic as a catalyst support to enhance energy conversion efficiency and hydrogen production. The structural design and working principle of the MSR microreactor are described along with the development of a 3D numerical model to study the heat transfer and fluid flow characteristics. The simulation results indicate that the proposed microreactor has a significantly low drop in pressure and more uniform temperature distribution in the SiC ceramic support. Further, the microreactor was developed and an experimental setup was conducted to test its hydrogen production performance. The experimental results show that the developed microreactor can be operated as thermally autonomous to reach its target working temperature within 9 min. The maximum energy efficiency of the microreactor is 67.85% and a hydrogen production of 316.37 ml/min can be achieved at an inlet methanol flow rate of 360 μl/min. The obtained results demonstrate that SiC honeycomb ceramic with high thermal conductivity can serve as an effective catalyst support for the development of MSR microreactors for high volume and efficient hydrogen production.  相似文献   

10.
Utilizing a compact, efficient and fast-response reactor for on-site reforming of liquid methanol is an effective method to solve the storage and transportation problems of hydrogen. In this paper, a mesh-type structured CuFeMg/γ-Al2O3/Al catalyst with strong bonding force was prepared by anodic oxidation method, and its intrinsic catalytic activity, hydrogen production capacity and start-up performance were compared with commercial granular catalyst in a plate microreactor. The results showed that although the mesh-type structured catalyst displayed lower intrinsic activity, it exhibited higher methanol conversion, which was because of the enhanced mass transfer ability. Overall, for the mesh-type structured catalyst, 27.1% higher hydrogen production capacity per unit volume was achieved when methanol conversion was 90%, and the reactor start-up time was reduced by 16.1% owing to the high thermal conductivity of the aluminum substrate. Moreover, the mesh-type structured catalyst also showed excellent stability in 160 h test.  相似文献   

11.
Ignoring possible effects due to intraphase diffusion within catalyst layers is a common feature of computational fluid dynamics models developed for reforming microchannel reactors. Resistance to diffusion within the catalyst layers applied to such a reactor is often ignored on the grounds that the catalyst layers are sufficiently thin to allow reactants unrestricted access to all available reaction sites. However, this assumption is not necessarily correct, and intraphase diffusion effects could be important. Three-dimensional numerical simulations were carried out using computational fluid dynamics to investigate the characteristics of intraphase transport processes within the catalyst layers arranged in a thermally integrated methanol reforming microchannel reactor. The heat and mass transfer effects involved in the reforming process were evaluated, and the optimum thickness of catalyst layers was determined for the reactor. Particular focus was placed on how to optimize the thickness of catalyst layers in order to operate the reactor more efficiently. The results indicated that the performance of the reactor can be greatly improved by means of proper design of catalyst layer thickness to enhance heat and mass transfer into the catalyst layers. The thickness of the catalyst layers can be optimized to minimize diffusional resistance while maximizing methanol conversion and hydrogen yield. Thick catalyst layers offer higher reactor performance, whereas thin catalyst layers improve catalyst utilization and thermal uniformity. The thickness scale at which intraphase diffusion effects become noticeable was finally determined on the basis of reactor performance. The critical thickness was found to be about 0.10 mm, and catalyst layers should be designed beyond this dimension to achieve the desired level of conversion. The critical thickness will vary depending upon layer properties and operating conditions.  相似文献   

12.
A Cu/Mn/ZnO catalyst slurry was modified with polyvinyl alcohol (PVA) as a dispersant and organic binder. The slurry, which forms a crack-free coating, was injected directly into an open microchannel before anodic bonding with Pyrex glass. To improve adherence, porous silicon (pore size <1 μm) was fabricated in the microchannel. Ultrasonic vibration test (180 W, 20 min) showed good adhesion with only 6 wt.% loss. The thicker catalyst layer, with lower thermal diffusivity (0.98 mm2/s), reduced heat loss during reaction on cratered design and performed better than two other geometric designs (blank, straight). The microchannel with cratered design can be deposited with a catalyst up to 24.4 mg, and has a hydrogen production rate of 0.85 mmol h−1 and 86% methanol conversion at 200 °C under a feed rate of 2SCCM.  相似文献   

13.
Hot spot formation is inevitable in a heat exchanger microchannel reactor used for steam reforming of methane because of the local imbalance between the generated and absorbed heat. A stripe configuration of the combustion catalyst layer was suggested to make the catalytic combustion rate uniform in order to minimize the hot spot near the inlet. The stripe configuration was optimized by response surface methodology with computational fluid dynamics. With the optimal catalyst layer, the hot spot was not observed near the inlet and the maximum temperature decreased by 130 K from that of the uniform catalyst layer without any conversion loss. The maximum relative particle diameters of the uniform and the optimal stripe catalyst layer were about 3.68 and 2.51, respectively, and the surface-averaged particle diameter of the optimal stripe catalyst layer was 7.64% less than that of the uniform stripe catalyst layer.  相似文献   

14.
A porous copper fiber sintered felt (PCFSF) as catalyst support is used to construct a methanol steam reforming microreactor for hydrogen production. The PCFSF has been produced by solid-state sintering of copper fibers which is fabricated using the cutting method. The impregnation method is employed to coat Cu/Zn/Al/Zr catalyst on the PCFSF. In this study, the effect of the porosity and manufacturing parameters for the PCFSF on the performance of methanol steam reforming microreactor is studied by varying the gas hourly space velocity (GHSV) and reaction temperature. When the 80% porosity PCFSF sintered at 800 °C in the reduction atmosphere is used as catalyst support, it is found that the microreactor shows remarkable superiority in the methanol conversion and H2 flow rate in comparison to the ones fabricated under other manufacturing parameters. Moreover, the microreactor with this catalyst-coated PCFSF also demonstrates the excellent stability of catalytic reaction in the methanol steam reforming process.  相似文献   

15.
In order to study the methanol steam reforming performance of the 3D-printed porous support for hydrogen production, three dimensional (3D) printing technology was proposed to fabricate porous stainless steel supports with body-centered cubic structure (BCCS) and face-centered cubic structure (FCCS). Catalyst loading strength of the 3D-printed porous stainless steel supports was studied. Moreover, methanol steam reforming performance of different 3D-printed porous supports for hydrogen production was experimentally investigated by changing reaction parameters. The results show that the 3D-printed porous stainless steel supports with BCCS and FCCS exhibit better catalyst loading strength, and can be used in the microreactor for methanol steam reforming for hydrogen production. Compared with 90 pores per inch (PPI) Fe-based foam support, 3D-printed porous stainless steel supports with FCCS and BCCS show the similar methanol steam reforming performance for hydrogen production in the condition of 6500 mL/(g·h) gas hourly space velocity (GHSV) with 360 °C reaction temperature. This work provides a new idea for the structural design and fabrication of the porous support for methanol steam reforming microreactor for hydrogen production.  相似文献   

16.
The potential of methanol reforming systems to greatly improve productivity in chemical reactors has been limited, due in part, to the effect of mass transfer limitations on the production of hydrogen. There is a need to determine whether or not a microchannel reforming reactor system is operated in a mass transfer-controlled regime, and provide the necessary criteria so that mass transfer limitations can be effectively eliminated in the reactor. Three-dimensional numerical simulations were carried out using computational fluid dynamics to investigate the essential characteristics of mass transport processes in a microchannel reforming reactor and to develop criteria for determining mass transfer limitations. The reactor was designed for thermochemically producing hydrogen from methanol by steam reforming. The mass transfer effects involved in the reforming process were evaluated, and the role of various design parameters was determined for the thermally integrated reactor. In order to simplify the mathematics of mass transport phenomena, use was made of dimensionless numbers or ratios of parameters that numerically describe the physical properties in the reactor without units. The results indicated that the performance of the reactor can be greatly improved by means of proper design of catalyst layer thickness and through adjusting feed composition to minimize or reduce mass transfer limitations in the reactor. There is not an effective method to reduce channel dimensions if the flow rate remains constant, or to reduce fluid velocities if the residence time is kept constant. The rate of the reforming reaction is limited by mass transfer near the entrance of the reactor and by kinetics further downstream, when the heat transfer in the autothermal system is efficient. Finally, the criteria that can be used to distinguish between different mass transport and kinetics regimes in the reactor with a first-order reforming reaction were presented.  相似文献   

17.
Two compact reformer configurations in the context of production of hydrogen in a fuel processing system for use in a Proton Exchange Membrane Fuel Cell (PEMFC) based auxiliary power unit in the 2–3 kW range are compared using computer-based modeling techniques. Hydrogen is produced via catalytic steam reforming of n-heptane, the surrogate for petroleum naphtha. Heat required for this endothermic reaction is supplied via catalytic combustion of methane, the model compound for natural gas. The combination of steam reforming and catalytic combustion is modeled for a microchannel reactor configuration in which reactions and heat transfer take place in parallel, micro-sized flow paths with wall-coated catalysts and for a cascade reactor configuration in which reactions occur in a series of adiabatic packed-beds, heat exchange in interconnecting microchannel heat exchangers being used to maintain the desired temperature. Size and efficiency of the fuel processor consisting of the reformer, hydrogen clean-up units and heat exchange peripherals are estimated for either case of using a microchannel and a cascade configuration in the reforming step. The respective sizes of fuel processors with microchannel and cascade configurations are 1.53 × 10−3 and 1.71 × 10−3 m3. The overall efficiency of the fuel processor, defined as the ratio of the lower heating value of the hydrogen produced to the lower heating value of the fuel consumed, is 68.2% with the microchannel reactor and 73.5% with the cascade reactor mainly due to 30% lower consumption of n-heptane in the latter. The cascade system also offers advanced temperature control over the reactions and ease of catalyst replacement.  相似文献   

18.
A convective heat transfer enhancement using nano- and micro-scale porous layer surface was discovered by the authors in 2004. Heat transfer experiments, analytical considerations, and flow visualization near the porous layer were performed to grasp the heat transfer enhancement mechanism. The heat transfer experiments revealed the porous layers were able to enhance heat transfer by 20–25% in net energy compared to the bare plate, independent of substrate materials. In order to understand the mechanism, one-dimensional unsteady heat conduction analysis was performed for a liquid column in the pore. It was found that the temperature recovery of the porous layer was incapable of catching up with the very fast fluctuation, so that the porous layer might be a thermal resistance when the main flow was strongly turbulent. The vestige visualized by the tracer particles of around 0.85 μm in diameter showed a fluid behavior like “squirt” from the porous layer. From the observation of the porous layer surface, the porous layer has some micro-scale bubbles inside its own pore-connecting structure in spite of the good wetting feature. These bubbles could be a main contributor to this heat transfer enhancement. To discuss this postulation, observations of bubble behavior in a microchannel have been carried out.  相似文献   

19.
To improve hydrogen production performance of reforming, a plate-type microchannel carrier plate with a ridge structure was designed based on the mixing effect. The mixing effect of the ridge structure on the hydrogen production performance of reforming was analyzed. Then the effects of geometric parameters (shape, size, spacing, and tilt angle) of the ridge structure on heat, mass transfer, and the hydrogen production performance of the reforming process were modelled and simulated. Finally, data analysis and structural optimisation of microchannels with the ridge structure were conducted via methanol steam reforming hydrogen production experiments. The experimental results show that the trapezoidal ridge structure microchannel (T-type0) achieved the best hydrogen production performance, whose methanol conversion rate was 60.8%, under the gas hourly space velocity of 48,757 mL/(g&h). Especially compared with the ordinary rectangular microchannel structure (O-type0), the methanol conversion rate of the trapezoidal ridge structure microchannel increased by 25.2%. Moreover, the pressure drop of this microchannel did not increase significantly, indicating that the structure did not significantly increase the pressure drop loss while enhancing the heat and mass transfer. Therefore, the ridge structure proposed in this paper can effectively improve heat and mass transfer performance and the hydrogen production efficiency of the microchannel.  相似文献   

20.
Packed bed tube reactors are commonly used for hydrogen production in proton exchange membrane fuel cells. However, the hydrogen production capacity of methanol steam reforming (MSR) is greatly limited by the poor heat transfer of packed catalyst bed. The hydrogen production capacity of catalyst bed can be effectively improved by optimizing the temperature distribution of reactor. In this study, four types of reactors including concentric circle methanol steam reforming reactor (MSRC), continuous catalytic combustion methanol steam reforming reactor (MSRR), hierarchical catalytic combustion methanol steam reforming reactor (MSRP) and segmented catalytic combustion reactor with fins (MSRF) are designed, modeled, compared and validated by experimental data. It was found that the maximum temperature difference of MSRC, MSRR, MSRP and MSRF reached 72.4 K, 58.6 K, 19.8 K and 11.3 K, respectively. In addition, the surface temperature inhomogeneity Uf and CO concentration of the MSRF decreased by 69.8% and 30.7%, compared with MSRC. At the same reactor volume, MSRF can achieve higher methanol conversion rate, and its effective energy absorption rate is 4.6%, 3.9% and 2.6% higher than that of MSRC, MSRR and MSRP, respectively. The MSRF could effectively avoid the influence of uneven temperature distribution on MSR compared with the other designs. In order to further improve the performance of MSRF, the influences of methanol vapor molar ratio, inlet temperature, flow rate, catalyst particle size and catalyst bed porosity on MSR were also discussed in the optimal reactor structure (MSRF).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号