首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
Biohydrogen production from dairy wastewater with subsequent biogas purification by hollow fiber membrane module was investigated in this study. The purified and not purified (raw) biohydrogen were used as fuel in polymer electrolyte membrane (PEM) fuel cell. Furthermore, the effect of CO2 on the performance of PEM fuel cell was evaluated considering cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and polarization curves. The maximum H2 production rate was 0.015 mmol H2/mol glucose and the biohydrogen concentration in biogas was ranged 33%–60% (v/v). CO2/H2 selectivity decreased with increasing pressure and maximum selectivity was obtained as 4.4 at feed pressure of 1.5 bar. The electrochemical active surface (EASA) areas were decreased with increasing CO2 ratio. The maximum power densities were 0.2, 0.08 and 0.045 W cm−2 for 100%, 80% and 60% (v/v) H2, respectively. The results indicated that integrated PEM fuel cell/biogas purification system can be used as a potential clean energy sources during acidogenic biohydrogen production from dairy wastewater.  相似文献   

2.
In recent times, biohydrogen production from microalgal feedstock has garnered considerable research interests to sustainably replace the fossil fuels. The present work adapted an integrated approach of utilizing deoiled Scenedesmus obliquus biomass as feedstock for biohydrogen production and valorization of dark fermentation (DF) effluent via biomethanation. The microalgae was cultivated under different CO2 concentration. CO2-air sparging of 5% v/v supported maximum microalgal growth and carbohydrate production with CO2 fixation ability of 727.7 mg L?1 d?1. Thereafter, lipid present in microalgae was extracted for biodiesel production and the deoiled microalgal biomass (DMB) was subjected to different pretreatment techniques to maximize the carbohydrate recovery and biohydrogen yield. Steam heating (121 °C) in coherence with H2SO4 (0.5 N) documented highest carbohydrate recovery of 87.5%. DF of acid-thermal pretreated DMB resulted in maximum H2 yield of 97.6 mL g?1 VS which was almost 10 times higher as compared to untreated DMB (9.8 mL g?1 VS). Subsequent utilization of DF effluent in biomethanation process resulted in cumulative methane production of 1060 mL L?1. The total substrate energy recovered from integrated biofuel production system was 30%. The present study envisages a microalgal biorefinery to produce biohydrogen via DF coupled with concomitant CO2 sequestration.  相似文献   

3.
The mucilage, which emerged as a result of increasing global warming and the deterioration of marine ecosystem balances, has taken the Marmara Sea under its influence. Mucilage appears in some periods and there is not much information about its bioenergy production potential. In this study, the biogas and biohydrogen production potential was determined when mucilage collected from the coasts is used as a substrate. Different S/X ratios were evaluated for biogas production. The highest biogas production was observed as 682 ml/g VS at the S/X ratio of 2. Dark fermentation was carried out using mixed Clostridium sp. to produce biohydrogen. As a result of fermentation, a maximum biohydrogen yield of 117 ml H2/g VS hydrogen was obtained. In terms of both biogas and hydrogen results, the bioenergy potentials of the mucilage sample taken from the surface were determined to be higher than the bottom sediment.  相似文献   

4.
The thematic area studied in this paper considers environmental issues such as atmospheric pollution from the combustion of fossil fuels, and the environmental impacts from the generation of urban agricultural solid wastes. This study has estimated the potential for hydrogen and biogas production from solid urban waste (SUW) and wine waste from Bento Gonçalves, which is a region in Brazil with the largest wine throughput and subsequent waste generation, thus providing a potential high-energy feedstock. The resulting hydrogen and biogas are assumed to displace the existing fuels in the local bus fleet. The analytical work consisted of three scenarios - scenario 1: production of biogas using SUW, sourced exclusively from the municipality of Bento Gonçalves; Scenario 2: the possibility to supply SUW from Bento Gonçalves and surrounding cities, to produce biogas; Scenario 3: the possibility to use wine waste and SUW for biogas production. Scenario 3 showed the greatest energy yield with 37.9 Gg of biomethane produced per year, which can supply the entire public bus fleet of Bento Gonçalves. The resulting hydrogen production potential using steam reforming of biomethane is 1.09 E+08 Nm3H2.d?1 which can generate 2.62 TW h.year?1 of electrical energy, avoiding approximate emissions of 355 ktonCO2.year?1. These findings indicate value in the production of biogas from urban and agricultural wastes, especially for the generation of methane, hydrogen and useful energy outputs. Its production from renewable and clean sources contributes to the gradual transformation of an economy currently dependent on non-renewable resources into a circular and renewable economy.  相似文献   

5.
Algal blooms can be harvested as renewable biomass waste for gaseous biofuel production. However, the rigid cell structure of raw algae may hinder efficient microbial conversion for production of biohydrogen and biomethane. To improve the energy conversion efficiency, biomass from an algal bloom in Dianchi Lake was subjected to a hydrothermal/steam acid pretreatment prior to sequential dark hydrogen fermentation and anaerobic digestion. Results from X-ray diffraction and Fourier transform infrared spectroscopy suggest that hydrothermal acid pretreatment leads to stronger damage of the amorphous structure (including hemicellulose and amorphous cellulose) due to the acid pretreatment, as evidenced by the higher crystallinity index. Scanning electron microscopy analysis showed that smaller fragments (∼5 mm) and wider cell gaps (∼1 μm) on algal cell surfaces occurred after pretreatment. In comparison to steam acid pretreatment, hydrothermal acid pretreatment resulted in a maximum energy conversion efficiency of 44.1% as well as production of 24.96 mL H2/g total volatile solids (TVS) and 299.88 mL CH4/g TVS.  相似文献   

6.
The present work aimed to increase the liquefaction and biohydrogen recovery of sea eelgrass by combining the surfactant, sodium tripolyphosphate (STPP) with dispersion homogenization. Firstly, the dispersion homogenization (DH) of sea eelgrass was performed by varying the dispersion revolution speed (rpm) from 4000 to 16,000 and treatment time from 0 to 60 min. The conditions for STPP induced dispersion homogenization (SDH) pretreatment (10,000 rpm and 0.05 g/g TS of STPP dosage) was optimized based on the liquefaction (solubilization) of sea eelgrass biomass. A higher liquefaction of 25.6% was achieved through SDH pretreatment. Bioacidification result shows that the percentage increment of volatile fatty acids (VFA) in SDH was found to be 54% higher when compared to DH. SDH pretreated sea eelgrass, when subjected to biohydrogen production yielded a peak production of 23.2 mL H2/g VS than DH (16 mL H2/g VS) and control-untreated raw biomass (3.2 mL H2/g VS). The preliminary energy analysis revealed that SDH was considered to be an energy efficient pretreatment process with energy ratio of 1.9 when compared to DH (0.75).  相似文献   

7.
In this study, a thermodynamic and economic analysis of a synthetic fuel production facility by utilizing the hydrogenation of CO2 captured from biogas is carried out. It is aimed to produce methanol, a synthetic fuel by hydrogenation of carbon dioxide. A PEM electrolyzer driven by grid-tie solar PV modules is used to supply the hydrogen need of methanol. The CO2 is captured from biogas produced in an actual wastewater treatment plant by a water washing unit which is a method of biogas purification. The required power which is generated by PV panels, in order to produce methanol, is found to be 2923 kW. Herein, the electricity consumption of 2875 kW, which is the main part of the total electricity generation, belongs to the PEM system. As a result of the study, the daily methanol production is found to be as 1674 kg. The electricity, hydrogen and methanol production costs are found to be $ 0.043 kWh?1, $ 3.156 kg?1, and $ 0.693 kg?1, respectively. Solar availability, methanol yield from the reactor, and PEM overpotentials are significant factors effecting the product cost. The results of the study presents feasible methanol production costs with reasonable investment requirements. Moreover, the efficiency of the cogeneration plant could be increased via enriching the biogas while emissions are reduced.  相似文献   

8.
Photocatalysis was used to produce hydrogen via alcohol dehydrogenation with a Pt/TiO2 catalyst. An experiment of coupling was realized between a photocatalytic hydrogen production reactor and an air-breathing PEM fuel cell. The photocatalytic hydrogen consumption rate achieved an optimum value for a loading of 1 wt% of platinum. Three different alcohols were compared. Their hydrogen production efficiency and the maximum current for the PEM fuel cell were compared and were ranged as: methanol ≥ ethanol > 2-propanol. The photocatalytic production was successfully used to feed the PEM fuel cell and reached a current of 0.202 A corresponding to a current density of 8.1 mA cm−2. No poisoning effect occurred for 100 h of working.  相似文献   

9.
To meet the increasing need for bioenergy several raw materials have to be considered for the production of e.g. bioethanol and biogas. In this study, three lignocellulosic raw materials were studied, i.e. (1) winter rye straw (Secale cereale L), (2) oilseed rape straw (Brassica napus L.) and (3) faba bean straw (Viciafaba L.). Their composition with regard to cellulose, hemicellulose, lignin, extractives and ash was evaluated, as well as their potential as raw materials for ethanol and biogas production. The materials were pretreated by wet oxidation using parameters previously found to be optimal for pretreatment of corn stover (195 °C, 15 min, 2 g l−1 Na2CO3 and 12 bar oxygen). It was shown that pretreatment was necessary for ethanol production from all raw materials and gave increased biogas yield from winter rye straw. Neither biogas productivity nor yield from oilseed rape straw or faba bean straw was significantly affected by pretreatment. Ethanol was produced by the yeast Saccharomyces cerevisiae during simultaneous enzymatic hydrolysis of the solid material after wet oxidation with yields of 66%, 70% and 52% of theoretical for winter rye, oilseed rape and faba bean straw, respectively. Methane was produced with yields of 0.36, 0.42 and 0.44 l g−1 volatile solids for winter rye, oilseed rape and faba bean straw, respectively, without pretreatment of the materials. However, biogas productivity was low and it took over 50 days to reach the final yield. It could be concluded that all three materials are possible raw materials for either biogas or ethanol production; however, improvement of biogas productivity or ethanol yield is necessary before an economical process can be achieved.  相似文献   

10.
Biohydrogen is considered as fuel of future owing to its distinctive attribute for clean energy generation, waste management and high energy content. Suitable feedstock play important role for achieving high rate hydrogen production via dark fermentation process. In this regard, different organic wastes such as cane molasses, distillery effluent and starchy wastewater were examined as potential substrates for biohydrogen production by Enterobacter cloacae IIT-BT 08. Groundnut deoiled cake (GDOC) was considered as additional nutritional supplement to enhance biohydrogen yields. The maximum hydrogen yield of 12.2 mol H2 kg−1 CODremoved was obtained using cane molasses and GDOC as co-substrates. To further ensure reliability of the process, bench (50 L) and pilot scale (10000 L) bioreactors were customized and operated. The pilot scale study achieved 76.2 m3 hydrogen with a COD removal and energy conversion efficiency of 18.1 kg m−3 and 37.9%, respectively. This study provides an extensive strategy in moving from lab to pilot scale biohydrogen production thereby, providing further opportunity for commercial exploitation.  相似文献   

11.
The performance of a novel electro-reformer for the production of hydrogen by electro-reforming alcohols (methanol, ethanol and glycerol) without an external electrical energy input is described. This tandem cell consists of an alcohol fuel cell coupled directly to an alcohol reformer, negating the requirement for external electricity supply and thus reducing the cost of operation and installation. The tandem cell uses a polymer electrolyte membrane (PEM) based fuel cell and electrolyser. At 80 °C, hydrogen was generated from methanol, by the tandem PEM cell, at current densities above 200 mA cm−2, without using an external electricity supply. At this condition the electro-reformer voltage was 0.32 V at an energy input (supplied by the fuel cell component) of 0.91 kWh/Nm3; i.e. less than 20% of the theoretical value for hydrogen generation by water electrolysis (4.7 kWh/Nm3) with zero electrical energy input from any external power source. The hydrogen generation rate was 6.2 × 10−4 mol (H2) h−1. The hydrogen production rate of the tandem cell with ethanol and glycerol was approximately an order of magnitude lower, than that with methanol.  相似文献   

12.
Basic biomass sources in Lithuania are comprised of wood, straw, biofuel and biogas. The current status and the problems from using biomass for energy production in Lithuania are analyzed. The possibility of utilizing wood waste, firewood, straw and biogas for energy is evaluated. Forest comprises about 2.05 Mha or 31.3% of Lithuanian land area. About 4.3 million m3 solid volume of wood per year can be used for fuel (843 ktoe). Wood as fuel is used directly or in processed form (briquettes, pellets and chips).Agriculture produces approximately 1.5–2.0 million tons of straw each year for animal feed, litter and olericulture. Around 30–40% (130 ktoe) could be used as fuel for energy production. Boiler houses for combusting the straw have increased and now comprise about 7 MW. Straw is also used for heating private houses.Sources for biogas production include sludge from water cleaning equipment, animal manure and organic waste in food processing companies. Total volume of operating bioreactors comprises about 24 000 m3, and annual production of biogas is 6.3 million m3 per year (3.4 ktoe). By year 2010 the total volume of bioreactors will increase to 35 000 m3 and about 50 000 m3 by 2040.In Lithuania biodiesel and bioethanol are mainly used in blending with conventional fuel. Following the requirements of the European Union (EU), 2% of total consumed fuel per year is to be produced in 2005. By 2010 biofuel should comprise not less than 5.75% of all fuel existing in the market.  相似文献   

13.
The use of Ca(OH)2 pre-treatment to improve fermentative biohydrogen yields, from wheat straw was investigated. Wheat straw was pre-treated with 7.4% (w/w) Ca(OH)2 at ambient temperature (20 °C) for 2, 5, 8, and 12 days, prior to 35 °C fermentation with sewage sludge inoculum. Biohydrogen yields were evaluated during dark fermentation and simultaneous saccharification fermentation (SSF) of total pre-treated straw material and compared to those from separated solid and hydrolysate fractions. Ca(OH)2 pre-treatment followed by SSF, exhibited a synergetic relationship. On average, 58.78 mL-H2 g-VS−1 was produced from SSF of pre-treated and filtered solids. This was accompanied by approximately a 10-fold increase in volatile fatty acid production, compared to the untreated control. By omitting pre-treatment hydrolysate liquors from SSF, H2 production increased on average by 35.8%, per VS of harvested straw. Additional inhibition studies indicated that CaCO3, formed as a result of pre-treatment pH control, could promote homoacetogenesis and reduce biohydrogen yields.  相似文献   

14.
Birch wood was pretreated with N-methylmorpholine-N-oxide (NMMO or NMO) followed by enzymatic hydrolysis and fermentation to ethanol or digestion to biogas. The pretreatments were carried out with NMMO (wNMMO = 85%) at 130 °C for 3 h, and the effects of drying after the pretreatment were investigated. Enzymatic hydrolysis of the untreated wood resulted in 8%–10% of theoretical glucose yield after 4 days hydrolysis, while the NMMO pretreatment improved this yield to 91%. Consequently, ethanol production yield from NMMO-pretreated materials resulted in around 9-fold improvement compared to the untreated wood. On the other hand, drying of the pretreated wood had a negative impact and decreased the yield of enzymatic hydrolysis by 4%–10%. Digestion of the untreated wood with thermophilic bacteria resulted in maximum methane yield of 158 cm3 g−1 of VS in 30 days, while the NMMO pretreatment improved the methane yield up to 232 cm3 g−1 of VS (80% of the theoretical biogas yield) in just 9 days.  相似文献   

15.
Arundo donax L. is a perennial plant that can substitute for traditional energy crops to produce biogas, reducing costs because of its high biogas yield per Ha cultivated and low agronomic and energetic inputs. Nevertheless, Arundo donax biomass needs to be ensiled to be preserved and used. Because no full-scale data exist about A. donax ensilage and the effect of this process on potential biogas production, in this work two different ensiling techniques, i.e. trench and silo-bag ensiling, were performed at full scale, and the processes studied for 200 days. Results obtained indicated that A. donax could be successful ensiled by using the two approaches. Ensilage proceeded by fermentation of organic acids already present in the biomass, i.e. malic and oxalic acids that were degraded, giving volatile fatty acid accumulation. This was different from corn ensiling characterized by starch fermentation to lactic acids. Biological processes determined a loss of the potential biomethane production, namely −20.1% and −7.6% for trench and silo-bag, respectively. Taking into consideration biomethane yield per Ha and ensilage losses, potential biomethane losses of 5000 Nm3 CH4 Ha−1 for trench silage and of 2000 Nm3 CH4 Ha−1 for silo bag, were estimated, respectively. Nevertheless, taking into consideration the higher biomass and biomethane yields Ha−1 in comparison with the other energy crops, A. donax still remained more efficient and cheaper than traditional energy crops in producing biogas.  相似文献   

16.
A web-enabled software was developed for continuous online monitoring of biohydrogen, biomethane and carbon dioxide gas fractions, temperature, Dissolved Oxygen (DO), pH, conductivity and gas volume for biogas fermentations. The cumulative gas volumes are computed recursively at 1 min intervals. Process data streamed into a MySQL database are accessible on a Local Area Network in real-time. This software was evaluated via continuous monitoring of two batches of dark fermentations for biohydrogen production using anaerobic sludge as inoculum and glucose as substrate. The effect of sampling frequency on the accuracy of cumulative hydrogen volume determination and the possible correlations between medium conductivity and biohydrogen evolution were examined. Data showed an erroneous over estimation of biohydrogen production at 12.09% and 16.23% for 12 and 24 h sampling intervals, suggesting the adoption of a high sampling rate to derive reliable key process parameters from the Gompertz model. Partial correlations were observed between medium conductivity and hydrogen gas fractions with maximum conductivity changes of 5.0 and 21.1 S × cm−1, corresponding to peaks of hydrogen concentrations of 33.53% and 44.86%, respectively. Accurate application of conductimetric techniques for real-time monitoring of biohydrogen production requires further understanding of all sources of conductivity changes. The implemented software could generate high throughput actionable information for biohydrogen process development and optimization.  相似文献   

17.
In this study, different pretreatment methods, including lyophilization, hydrothermal pretreatment, and ultrasound combined with dilute alkali post-cooking, were investigated to enhance the efficiency of enzymatic saccharification and biohydrogen production of the wheat straw. All pretreatment methods could effectively remove lignin and hemicellulose while retaining cellulose, further enhancing the biomass accessibility for subsequently enzymatic saccharification and biohydrogen production. A reducing sugar concentration of 13.18 g/L was acquired when wheat straw was treated with ultrasound and dilute alkali cooking (RU). The sequential fermentative hydrogen yield of the substrate RU was 133.6 mL/g total solids (TS), which was 5.6-fold larger than that of the raw material (23.9 mL/g TS). The study confirmed that ultrasound combined with dilute alkali cooking was an effective method, which not only provided significant guideline for improving biohydrogen production but also presented helpful direction for the efficient pretreatment of other lignocellulosic biomass.  相似文献   

18.
Reduced graphene oxide (RGO) is used in many energy applications, especially in Polymer Electrolyte Membrane (PEM) fuel cells, as carbon sourced catalyst support materials. In this study, thermally (T-RGO) and chemically (C-RGO) reduced GO support materials were synthesized for utilization in PEM fuel cells. Pt catalysts were synthesized using supercritical carbon dioxide (SCCO2) deposition technique over synthesized support materials. Physical (BET, SEM-EDX, FTIR, RAMAN, XRD, TEM, ICP-MS and optical tensiometer) and electrochemical (CV, PEM fuel cell test) characterizations of synthesized support materials and corresponding Pt catalysts were performed. The differences between the structures of thermally and chemically reduced graphene oxide supports and their Pt catalysts were investigated. The ECSA values of the Pt/T-RGO and Pt/C-RGO catalysts are 19.86 m2 g?1 and 6.31 m2 g?1, respectively. The current and power density values of the Pt/T-RGO and Pt/C-RGO catalysts at 0.6 V are 84 mA cm?2, 80 mA cm?2 and 50 mW cm?2, 45 mW cm?2, respectively. Pt/T-RGO and Pt/C-RGO catalysts showed similar trend in PEMFC environment.  相似文献   

19.
Hydrogen is a clean energy carrier which can be used as fuel in fuel cells. Today, hydrogen is produced mainly by steam reforming of fossil fuels like natural gas or oil. But only hydrogen produced by renewable sources can be called clean energy production. One possibility for hydrogen production is the biological fermentation of biogenous wastes by hydrogen producing bacteria. For the experimental setup four 30-L-working-volume reactors were constructed for continuous biohydrogen production. As inoculum, heat-treated sludge of a wastewater treatment plant was used. Different hydraulic retention times (HRT) were tested and an organic loading rate (OLR) of 2–14 kg VS/m3*d. As starting substrate, waste sugar medium was used. The pH and other parameters were observed to find boundary conditions for a stable continuous process with a minimum of online-control measurements. The high concentration of organic acids in the reactor led to a very low pH, which was controlled manually and online > 4 up to 5.5, otherwise the biohydrogen production decreased rapidly. The gas amount varied with the different OLRs, but could be stabilised on a high level as well as the hydrogen concentration in the gas with 44–52%. No methane was detected in the gas. It turned out, that continuous biohydrogen production with stable gas amounts and qualities could be achieved at different operation conditions. The results showed, that the operation of a continuous biohydrogen reactor has to be observed very carefully to ensure a constant gas production, and that pH-control is necessary to ensure stable operation conditions.  相似文献   

20.
The global progress in pushing the clean energy initiatives can be seen both as a challenge and opportunity for energy companies. Inclusion of “Hydrogen” as a value-added product from the refineries and use of fuel cells in the energy mix of an oil company, presents such an opportunity. However, the refinery hydrogen is not a fuel cell grade due to inherent impurities like carbon monoxide, carbon dioxide and methane are associated owing to the hydrocarbon source of production. In this study, a Low-temperature PEM fuel cell stack with 30 cells and active area of 50 cm2 was optimized on neat hydrogen in terms of its operating parameters including temperature, pressure and relative humidity. Upon optimization, the contamination tests were performed by doping various concentrations contaminants for simulating the refinery hydrogen composition. The results of performance evaluation with neat hydrogen and the impact of different contaminants are discussed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号