首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen storage nanocomposites prepared by high energy reactive ball milling of magnesium and vanadium alloys in hydrogen (HRBM) are characterised by exceptionally fast hydrogenation rates and a significantly decreased hydride decomposition temperature. Replacement of vanadium in these materials with vanadium-rich Ferrovanadium (FeV, V80Fe20) is very cost efficient and is suggested as a durable way towards large scale applications of Mg-based hydrogen storage materials. The current work presents the results of the experimental study of Mg–(FeV) hydrogen storage nanocomposites prepared by HRBM of Mg powder and FeV (0–50 mol.%). The additives of FeV were shown to improve hydrogen sorption performance of Mg including facilitation of the hydrogenation during the HRBM and improvements of the dehydrogenation/re-hydrogenation kinetics. The improvements resemble the behaviour of pure vanadium metal, and the Mg–(FeV) nanocomposites exhibited a good stability of the hydrogen sorption performance during hydrogen absorption – desorption cycling at T = 350 °C caused by a stability of the cycling performance of the nanostructured FeV acting as a catalyst. Further improvement of the cycle stability including the increase of the reversible hydrogen storage capacity and acceleration of H2 absorption kinetics during the cycling was observed for the composites containing carbon additives (activated carbon, graphite or multi-walled carbon nanotubes; 5 wt%), with the best performance achieved for activated carbon.  相似文献   

2.
The structure and properties of magnesium nanoparticles for hydrogen storage from reactive milling under hydrogen atmosphere with the carbon from anthracite coal carbonization as milling aid were investigated. Experiment showed that after 3 h of milling under 1 MPa of hydrogen with 30 wt.% of carbon additive, the magnesium particles were milled to 20–60 nm and hydrided into β-MgH2 with a crystallite size of 29.7 nm. For the hydrogen desorption of the material, the onset temperature was determined to be 270 °C. In 270–390 °C, the enthalpy and entropy changes were calculated to be 44.5 kJ/mol and 83.8 J/(mol K), respectively, and the activation energy as pseudo first-order reaction was 127.1 kJ/mol. The carbon still played a role of nano-confinement for magnesium to prevent particles from coalescing in the process of repeatedly heating for hydrogen storage.  相似文献   

3.
The hydrogen sorption performance of Mg is constrained by the difficulties of hydrogen dissociation on particle surface and mass transfer in particle bulk. This work focuses on oxygen vacancy and its effect on the performance of Mg-xCeO2 (x = 0.7, 1.5, 3, and 6 mol.%) from ball milling for hydrogen storage. The HRTEM observation shows that the crystal domains of Mg from ball milling are reduced to nanoscale by the addition of hard CeO2 nanoparticles. The XRD and XPS characterization shows that during heating for hydrogenation, some O atoms in CeO2 transfer to Mg and form MgO, and CeO2 converts to Ce6O11 with oxygen vacancies. The isothermal absorption (p-c-T) analysis shows that the hydrogen capacity of the materials increases with the increase of CeO2 additive, and the optimum addition is 3.0 mol.%. The DSC analysis shows that with the addition of 3.0 mol.% of CeO2, the hydrogen desorption peak temperature is 35 °C lower than that of pure MgH2, and the calculated activation energy deceases by 31.3 kJ/mol. The improvement of hydrogen sorption performance is mainly attributed to the formation of oxygen vacancies.  相似文献   

4.
Magnesium-based wastes were reprocessed by mechanical milling under air atmosphere and used to produce hydrogen by hydrolysis on a laboratory scale. The evolution of the material during reprocessing and the generation of hydrogen in a 0.6 M MgCl2 aqueous solution at 24 °C are reported. The morphology, microstructure and phase abundance change with milling time. During mechanical processing, (i) particle size and crystallite size reduce, (ii) microstrain accumulates in the material, (iii) Al dissolves in Mg, (iv) the amount of Mg17Al12 (β-phase) increases and (v) small quantities of Fe from the milling tools are incorporated in the material. By hydrolysis, hydrogen yields in the 70–90% range after 30 min of reaction have been obtained, depending on milling time. Reactants are not exhausted during the hydrolysis reaction in the saline solution, due to the formation of a Mg(OH)2 layer that produces a passivating effect. Higher generation has been observed for larger particles and for materials reprocessed for longer milling times. Reaction kinetics also improves with milling time, with faster rates observed for the smaller particles. The shape of the hydrolysis curves can be fitted with a model that corresponds to a reaction limited by a three dimensional geometric contraction process. Mg17Al12 and Fe favor hydrogen production by acting as micro-galvanic cathodes during the reaction.  相似文献   

5.
Methanol steam reforming (MSR) can supply hydrogen (H2) to underwater vehicles equipped with a fuel cell. Low reaction temperatures ensure the composition of the reformed gas suitable for the H2 purification unit and increase the design freedom of a reforming plant. However, such temperatures decrease the catalyst activity and thereby the methanol (MeOH) conversion and H2 production. Herein, hydrogen peroxide (H2O2) was supplied with MeOH and water (H2O) to ensure sufficient MeOH conversion and H2 production at low temperatures. A tube reactor loaded with a commercial Cu/Zn catalyst was installed in an electric furnace maintained at 200–250 °C, and MeOH and 0 wt%, 11.88 wt%, 22.51 wt%, and 32.07 wt% H2O2 were supplied. When the furnace temperature was 200 °C, the MeOH conversion was 49.3% at 0 wt% H2O2 but 93.5% at 32.07 wt% H2O2. The effect of adding H2O2 was greater under the temperature conditions where the MeOH conversion was 100% or less. To analyze the effect of H2O2 addition on catalyst durability, the furnace was maintained at 200 °C, and the reactor was continuously operated for 110 h with 0 wt% and 32.07 wt% H2O2. The addition of H2O2 did not significantly decrease the Cu/Zn catalyst durability.  相似文献   

6.
In this paper, the nanocrystalline and amorphous PrMg11Ni + x wt.% Ni (x = 100, 200) alloys were synthesized by mechanical milling. The gaseous and electrochemical hydrogen storage performances were studied in detail. The results reveal that increasing Ni content facilitates the glass forming of the alloys, and it significantly improves the gaseous and electrochemical hydrogen storage kinetics performance. Furthermore, milling time varying significantly affects the hydrogen storage properties of the alloys. The hydrogen capacity of the alloys first increases and then decreases with milling time prolonged. The hydriding rate and high-rate discharge ability (HRD) of the as-milled alloys have maximum values with milling time varying. But dehydriding rate always increases with milling time prolonged. The improved gaseous hydrogen storage kinetics of alloys are convinced to be ascribed to a reduction in hydrogen desorption activation energy caused by increasing Ni content and prolonging milling time.  相似文献   

7.
Mg2CoH5 was synthesized by reactive mechanical milling (RMM) under hydrogen atmosphere (0.5 MPa) from 2MgH2–Co and 3MgH2–Co mixtures, with a yield >80%. The microstructure, structure and thermal behavior of the phases formed during the processing were investigated by transmission electron microscopy, X-ray diffraction and differential scanning calorimetry. Kinetic properties of the reaction with hydrogen of the 2MgH2–Co and 3MgH2–Co mixtures after RMM were evaluated using modified Sieverts-type equipment. The 3MgH2–Co mixture showed better properties for storage applications, with its highest rate of hydrogen absorption and desorption at 300 °C, its storage capacity of about 3.7 wt% in less than 100 s, and good stability after cycling. Although the starting material presents Mg2CoH5 as majority phase, the cycling leads to disproportion between Mg and Co. We obtained a mixture of Mg2CoH5, Mg6Co2H11 and MgH2 hydrides, as well as other phases such as Co and/or Mg, depending on experimental conditions.  相似文献   

8.
The transformation from a fossil fuels economy to a low carbon economy reshapes how energy is transmitted. Since most renewable energy is harvested in the form of electricity, hydrogen obtained from water electrolysis using green electricity is considered a promising energy vector. However, the storage and transportation of hydrogen at large scales pose challenges to the existing energy infrastructures, both regarding technological and economic aspects. To facilitate the distribution of renewable energy, a set of candidate hydrogen transportation infrastructures using methanol and ammonia as hydrogen carriers were proposed. A systematical analysis reveals that the levelized costs of transporting hydrogen using methanol and ammonia in the best cases are $1879/t-H2 and $1479/t-H2, respectively. The levelized cost of energy transportation using proposed infrastructures in the best case is $10.09/GJ. A benchmark for hydrogen transportation infrastructure design is provided in this study.  相似文献   

9.
With the continuous development of human society, the shortages of fossil resource and environmental pollution are increasingly prominent. Hydrogen is a clean and efficient alternative energy, among various hydrogen production technologies, methanol reforming has been regarded as a promising candidate to produce hydrogen for daily energy supply due to its low cost and safe transportation. In this review, we discuss the sources of methanol and the methods of methanol reforming for hydrogen production. Then, we focus on the catalysts for methanol reforming and their preparation methods. Particular attention is paid to the structural design and manufacturing process to make methanol reforming microreactors. We also summarize recent studies on the practical applications of methanol reforming technologies, as well as the capture and utilization of the generated carbon to reduce its emission. Finally, the prospect challenges of methanol reforming for highly efficient hydrogen production technologies and contribution to the “double carbon” goals and the challenges are discussed. In summary, this review will be conducive to the development of hydrogen-methanol economy for practical and industry applications.  相似文献   

10.
Magnesium hydride (MgH2) is a promising on-board hydrogen storage material due to its high capacity, low cost and abundant Mg resources. Nevertheless, the practical application of MgH2 is hindered by its poor dehydrogenation ability and cycling stability. Herein, the influences and mechanisms of thin pristine magnesium oxide (MgO) and transition metals (TM) dissolved Mg(TM)O layers (TM = Ti, V, Nb, Fe, Co, Ni) on hydrogen desorption and reversible cycling properties of MgH2 were investigated using first-principles calculations method. The results demonstrate that either thin pristine MgO or Mg(TM)O layer weakens the MgH bond strength, leading to the decreased structural stability and hydrogen desorption energy of MgH2. Among them, the Mg(Nb)O layer exhibits the most pronounced destabilization effect on MgH2. Moreover, the Mg(Nb)O layer presents a long-acting confinement effect on MgH2 due to the stronger interfacial bonding strength of Mg(Nb)O/MgH2 and the lower brittleness of Mg(Nb)O itself. Further analyses of electronic structures indicate that these thin oxide layers coating on MgH2 surface reduce the bonding electron number of MgH2, which essentially accounts for the weakened MgH bond strength and enhanced hydrogen desorption properties of modified MgH2 systems. These findings provide a new avenue for enhancing the hydrogen desorption and reversible cycling properties of MgH2 by designing and adding suitable MgO based oxides with high catalytic activity and low brittleness.  相似文献   

11.
Hydrogen-rich combustion in engines helps in reducing pollutants significantly. But hydrogen usage on a moving vehicle is not getting large-scale user acceptance mainly due to its poor energy storage density resulting in shorter driving ranges. This storage issue led to the hunt for mediums that can efficiently produce on-board hydrogen. Methanol proves to be an efficient alcohol fuel for producing hydrogen through steam reforming reaction. The heat energy required for such endothermic reaction is obtained through exhaust engine waste energy and this process is collectively known as thermochemical recuperation. However, the conventional reactor used for this process faces a lot of problems in terms of efficiency and methanol conversion. In this study, an attempt has been made to improve the design of the reactor for on-board hydrogen generation using engine exhaust heat for addressing the challenges related to performance and hydrogen yield. For enhancing the heat transfer, a finned surface (straight & wavy) was introduced in the reactor which resulted in an increment in methanol conversion significantly. It was found that wavy fin improved the methanol conversion up to 96.8% at an exhaust inlet temperature of 673 K. Also, a diffusing inlet section was introduced to increase the residence time of reactant gases while passing through the catalyst zone. Under given inlet conditions, the methanol conversion for 6° diffuse inlet reactor goes up to 87.9% as compared to 75.4% for the conventional reactor.  相似文献   

12.
Magnesium nickel alloy (Mg2Ni) which used as the negative electrode material in the nickel-metal hydride (Ni/MH) secondary battery is modified by graphite via mechanical milling. The effects of graphite on the Mg2Ni are systematically investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and a series of electrochemical tests. The results show that the cycle stability of the Mg2Ni alloy is improved with the addition of 10 wt.% graphite and the discharge capacity at the 20th cycle increase from 116.9 mA g?1 to 178.5 mA g?1. The Tafel polarization test indicates better corrosion resistance of the Mg2Ni/graphite composite. Meanwhile, the results of electrochemical tests indicate that both the charge-transfer reaction rate on the surface of the alloy and the hydrogen diffusion rate inside the bulk of alloy are boosted with the introduction of graphite.  相似文献   

13.
Hydrogen production from methanol rather than the traditional source, methane, is considered to be advantageous in ease of transportation and storage. However, the current copper-based catalysts utilized in methanol steam reforming are associated with challenges of sintering at high temperature and production of CO which could poison fuel cells. In addressing these challenges, ZnO nanorods were grown hydrothermally on the surface of cordierite and impregnated with Cu to produce catalysts for methanol steam reforming. The catalysts were characterized using SEM, XRD, FTIR, XPS, BET and Raman Spectroscopy. A fixed-bed reactor was used for testing the catalysts while the reaction products were characterized using a GC fitted with FID and TCD. The effects of temperature, methanol concentration and particle size of catalysts on methanol steam reforming were investigated. The experiments were carried out between 180 and 350 °C. CO selectivity of 0% was observed for temperatures between 180 and 230 °C for 0.8 MeOH:1H2O with an average H2 selectivity of 98% for that temperature range. XPS showed that the catalyst was relatively unchanged after reaction while Raman spectroscopy revealed coke formation on the catalyst surface for reactions carried out above 300 °C. This shows that the catalyst is active and selective for the reaction.  相似文献   

14.
A novel idea of wind energy based methanol and hydrogen production is proposed in this study. The proposed system utilizes the industrial carbon emissions to produce a useful output of methanol. There are several pros of manufacturing the methanol as it has the capability to be employed as conventional automotive fuel as it carries the advantages of efficient performance, low emissions and low flammability risk. The designed system comprises of the major subsystems of wind turbines, proton exchange membrane fuel cell (PEMFC), methanol production system and distillation unit. The Engineering Equation Solver (EES) and Aspen Plus are utilized for system modeling and comprehensive analysis. The proposed system is also investigated to operate under different wind speeds and different wind turbine efficiencies. The proposed integration covers all the electric power required by the system. The industrial flue gas including CO2 reacts with hydrogen to produce methanol. The designed system produces both methanol and hydrogen simultaneously. For the performance indicator, efficiencies of the overall system are calculated. The exergetic efficiency is found to be 38.2% while energetic efficiency is determined to be 39.8%. Furthermore, some parametric studies are conducted to investigate the distillation column performance, methanol and hydrogen capacities and exergy destruction rates.  相似文献   

15.
We prepared an ordered Mg3Cd alloy by high energy ball milling of elemental powders. The synthesized alloy exhibited good hydrogenation kinetics and reversibly absorbed about 2.8 wt. % of hydrogen. The temperature dependence of hydrogenation kinetics of the alloy measured in the range of temperatures covering the order-disorder phase transformations in the Mg3Cd and MgCd phases did not exhibit any anomalies and could be fitted with a single Arrhenius line. The measured apparent activation energy (69 ± 2 kJ/mol) hinted that hydrogenation process was controlled by diffusion of Cd in metallic phase. The pressure-composition isotherms exhibited negligible pressure hysteresis and sloping pressure plateau. Based on microstructural evidence obtained with the aid of X-ray diffraction and scanning electron microscopy, we built a thermodynamic model predicting the plateau hydrogen pressure for partially hydrogenated alloy. The predictions of the model were in a good agreement with the experimental data. Finally, we discussed the origins and the growth mechanisms of Cd whiskers observed in the alloys after full hydrogenation cycle.  相似文献   

16.
The hydrogen storage alloy of Ti0.32Cr0.43V0.25 was prepared by arc melting and high energy ball milling. Effects of ball milling were studied for various time periods (30–300 min) at 200 rpm. The hydrogen storage capacity of the alloy decreased with the increase in milling time. The reasons for the drop in the hydrogen storage capacity are twofold: surface contamination of the alloy powder and the microstructural changes. The latter includes the increase in lattice strain, the decrease in crystallite size and the consequent increase in subgrain boundaries. Despite the microstructural changes, the BCC phase of the alloy was maintained and its lattice constant remained nearly the same.  相似文献   

17.
In this study, powder mixtures of MgH2 + 2 mol.% X, with X = Nb, Nb2O5, NbF5, Fe, Fe2O3, FeF3, were processed by mechanical milling at liquid nitrogen temperature (cryomilling). The effect of additives on crystalline structure, thermal properties and hydrogen storage properties of the mixtures were investigated. Morphological investigations indicated a heterogeneous particle size distribution of the powder mixtures and a fine dispersion of additive particles (FeF3) in the MgH2 matrix. High resolution synchrotron radiation X-ray diffraction (SR-XRD) data followed by Rietveld refinements showed a significant reduction on crystallite size for the samples containing fluorides (11 nm) in comparison with the pure MgH2 sample (29 nm). This was related to the mechanical behavior of fluorides during milling with MgH2, which act as a lubricant, dispersing and/or cracking agent during milling, and thus helping to further reduce MgH2 particle size. DSC analysis revealed that fluorides (NbF5, FeF3) are much more effective than oxides (Nb2O5, Fe2O3) and the transition metals (Nb and Fe), respectively, in reduction the desorption temperature. Furthermore, Nb2O5 is more efficient than Fe2O3. Finally, the best results for desorption kinetics were observed for the fluorides: NbF5 and FeF3 (equivalent effect and consistent to the DSC analysis) followed by the oxides: Nb2O5, Fe2O3 and Nb. The addition of Fe was not efficient in comparison with the pure cryomilled sample.  相似文献   

18.
In this study the effects of mechanical milling with 5 wt.% of additives (V, Nb, Ti and Graphite) on the hydrogen desorption temperature of the magnesium hydride (MgH2) were studied. The powder mixtures were mechanically milled for 2 h. X-ray diffraction (XRD), scanning electron microscope (SEM), and optical microscope (OM) techniques were used for the structural and morphological characterization of powders. Differential scanning calorimeter (DSC) was used to investigate the effects of the mechanical milling with additives on the hydrogen desorption temperature of the magnesium hydride powder. DSC results show that the hydrogen desorption temperatures of mechanically milled MgH2 with additives are depressed about ∼40–50 °C compared with that of as-received MgH2. The particle size analysis results indicate that decrease of the particle size of powders leads to a decrease of the hydrogen desorption temperature. Moreover, increasing specific surface area can also contribute to a decrease on the hydrogen desorption temperature.  相似文献   

19.
The ball to powder ratio (BPR) is a processing parameter that is frequently used in both mechanical (ball) milling and mechanical alloying. A number of recent studies provided the BPR as a principal milling parameter while neglecting other parameters, such the vial volume, the diameter and quantity of milling balls and the powder mass. In this experiment, different batches of magnesium hydride powder were milled using varying ball size, powder mass, and other parameters and a constant BPR. The hydrogen desorption properties (i.e., differential scanning calorimeter) and phase evolution (i.e., XRD phase analysis) of the milled powders were subsequently investigated. The obtained results demonstrated that the BPR cannot be provided as a single processing parameter. The DSC curves obtained during decomposition with a scanning rate of 5 °C/min revealed significant differences in desorption peak temperature among the samples milled using the same BPR. Additionally, XRD patterns revealed that the crystallite size after milling varied, suggesting that differences existed in the effectiveness of the milling process.  相似文献   

20.
Hydrogen has become a versatile and clean alternative to meet increasingly urgent energy demands since its high heating value and renewability. However, considering the hazards of hydrogen storage and transport, in-situ production processes are drawing more attention. Among all the hydrogen carriers, methanol has become one of the research focuses due to its high H/C ratio, flexibility and sustainability. Regarded as the core of hydrogen supply system, catalysts with higher activity, selectivity and stability are continuously developed for improved efficiency. In this review, two groups of catalysts were investigated namely copper-based and group VIII metal-based catalysts. Not only macro indicators such as feedstock conversion and product selectivity, but also micro interaction and reaction mechanism were elaborated, with respect to the effects of promoters, supports, synthesis methods and binary metal components. Notably, several reaction pathways and catalysts deactivation mechanisms were suggested based on this series of inspection of the structure-reactivity relationship, along with a general perception that large surface area, well dispersed metals, small particle size and synergy effects significantly improve the catalytic performance. Accordingly, a novel concept of single-atom catalysts (SACs) was introduced aimed at efficient hydrogen production under more moderate conditions, by combining the advantages of heterogeneous and homogeneous catalysis. Additionally, an efficient reforming process is required by properly regulating the feed flow and heat flow through a coupled system. Conclusively, a thorough supply and demand network of hydrogen based on methanol was presented, giving an overview for on-board applications of hydrogen energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号