首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mg2−xAlxNi (x = 0, 0.3, 0.5, 0.7) hydrogen storage alloys used as the negative electrode in a nickel–metal hydride (Ni–MH) battery were successfully prepared by means of hydriding combustion synthesis (HCS) and the selected alloy Mg1.5Al0.5Ni was further modified by mechanical milling (MM). The structural and electrochemical hydrogen storage properties of Mg2−xAlxNi alloys have been investigated in detail. XRD results show that a new phase Mg3AlNi2 that possesses an excellent cycling stability is observed with the substitution of Al for Mg. A short-time mechanical milling has a significant effect on improving the discharge capacity of the HCS product of Mg1.5Al0.5Ni. The maximum discharge capacity of Mg1.5Al0.5Ni ascends with increasing mechanical milling time and reaches the maximum 245.5 mAh/g when milled for 10 h. The alloy milled for 5 h shows the best electrochemical kinetics, which is due to its smaller mean particle size and uniform distribution of the particles. Further increasing in mechanical milling time could not bring about better electrochemical kinetics, which might be attributed to the agglomeration of the alloy particles and thus the charge-transfer reaction and hydrogen diffusion are restrained. It is suggested that the novel method of HCS + MM is promising to prepare ternary Mg-based intermetallic compound for electrochemical hydrogen storage.  相似文献   

2.
Mg2Ni-based hydride was prepared by hydriding combustion synthesis (HCS), and subsequently modified with various metal elements (Ti, Co, Cr and Y) by mechanical milling. The effects of the modifications on electrochemical properties of the hydride were investigated. Both of the maximum discharge capacity and the high rate dischargeability (HRD) are increased by the modification of Co, while the cycling stability is improved for the hydride modified with Ti, Cr and Y. The Tafel polarization shows that the addition of the metals has a positive effect on improving the anti-corrosion ability. The electrochemical kinetics was also characterized by linear polarization, electrochemical impedance spectroscopy and potentiostatic discharge. The results show that the hydrogen diffusion coefficient and the electrochemical reaction resistance are increased by the modifications, but the exchange current density decreases.  相似文献   

3.
A Mg–30 wt.% LaNi5 composite was prepared by hydriding combustion synthesis followed by mechanical milling (HCS + MM), and the hydriding and dehydriding properties of the HCS + MM product were compared with those of the HCS product and the MM product. The dehydriding temperature onsets of the MM and HCS + MM products were both 470 K, which were lower than that of the HCS product by 100 K. Moreover, the HCS + MM product desorbed faster than the MM product, e.g., the former desorbed completely upon heating to 510 K, whereas the latter did not decompose completely until 590 K. Additionally, the HCS + MM product reached a saturated hydrogen absorption capacity of 3.80 wt.% at 373 K in 50 s, but both the HCS product and the MM product absorbed less than 1.50 wt.% of hydrogen at 373 K in 1800 s. These results suggest the potential of the HCS + MM processing in preparing Mg-based hydrogen storage materials.  相似文献   

4.
To improve the hydrogen storage performance of magnesium hydride, multi-wall carbon nanotubes supported palladium (Pd/MWCNTs) was introduced to the magnesium-based materials. Pd/MWCNTs catalysts with different amounts of Pd (20 wt.%, 40 wt.%, 60 wt.%, 80 wt.%) were synthesized by a solution chemical reduction method. Afterwards, Mg95–Pdm/MWCNTs5−m (m = 0, 1, 2, 3, 4, 5) were prepared for the first time by hydriding combustion synthesis (HCS) and mechanical milling (MM). It is determined by X-ray diffraction (XRD) analysis that Pd/MWCNTs can significantly increase the hydrogenation degree of magnesium during the HCS process. The microstructures of the composites obtained by transmission electron microscope (TEM) and field emission scanning electronic microscopy (FESEM) analyses show that Pd nanoparticles are well supported on the surface of carbon nanotubes and the Pd/MWCNTs are dispersed uniformly on the surface of MgH2 particles. Moreover, it is revealed that there is a synergistic effect of MWCNTs and Pd on the hydrogen storage properties of the composites. The Mg95–Pd3/MWCNTs2 shows the optimal hydriding/dehydriding properties, requiring only 100 s to reach its saturated hydrogen absorption capacity of 6.67 wt.% at 473 K, and desorbing 6.66 wt.% hydrogen within 1200 s at 573 K. Additionally, the dehydrogenation activation energy of MgH2 in this system is decreased to 78.6 kJ/mol H2, much lower than that of as-received MgH2.  相似文献   

5.
Significant improvement of the hydrogen storage property of the magnesium-based materials was achieved by the process of hydriding combustion synthesis (HCS) followed by mechanical milling (MM) and the addition of nanosized Zr0.7Ti0.3Mn2 and MWCNT. Mg95Ni5 doped by 10 wt.% nanosized Zr0.7Ti0.3Mn2 and 3 wt.% MWCNT prepared by the process of HCS + MM absorbed 6.07 wt.% hydrogen within 100 s at 373 K in the first hydriding cycle and desorbed 95.1% hydrogen within 1800 s at 523 K. The high hydriding rate remained well and the hydrogen capacity reached 5.58 wt.% within 100 s at 423 K in the 10th cycle. The dehydrogenation activation energy of this system was 83.7 kJ/mol, which was much lower than that of as-received MgH2. A possible hydrogenation–dehydrogenation mechanism was proposed in terms of the structural features derived from the HCS + MM process and the synergistic catalytic effects of nanosized Zr0.7Ti0.3Mn2 and MWCNT.  相似文献   

6.
Mg2Ni-based hydride was prepared by hydriding combustion synthesis (HCS), and subsequently modified with various carbonaceous materials including graphite, multi-walled carbon nanotubes (MWCNTs), carbon aerogels (CAs) and carbon nanofibers (CNFs) by mechanical milling (MM) for 5 h. The structural properties of the modified hydrides were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). All of the modified hydrides show amorphous or nanocrystalline-like phases. The hydride modified with graphite exhibits the most homogenous distribution of particles and the smallest particle size. The effects of the modifications on electrochemical properties of the hydride were investigated by galvanostatic charge/discharge, linear polarization, Tafel polarization, electrochemical impedance spectroscopy and potentiostatic discharge measurements. The results show that the maximum discharge capacity, the high rate dischargeability (HRD), the exchange current density and the hydrogen diffusion ability of the hydride modified with the carbonaceous materials are all increased. Especially, the hydride modified with graphite possesses the highest discharge capacity of 531 mAh/g and the best electrochemical kinetics property.  相似文献   

7.
The catalytic mechanism of Nb2O5 and NbF5 on the dehydriding property of Mg95Ni5 prepared by hydriding combustion synthesis and mechanical milling (HCS + MM) was studied. It was shown that NbF5 was more efficient than Nb2O5 in improving the dehydriding property. In particular, the dehydriding temperature onset decreases from 460 K for Mg95Ni5 to 450 K for Mg95Ni5with 2.0 at.% Nb2O5, whereas it decreases to 410 K for that with 2.0 at.% NbF5. By means of X-ray diffraction and X-ray photoelectron spectroscopy, it was confirmed that the interaction between the Nb ions and the H atoms and that between the anions (O2− or F) and Mg2+ existed in Mg95Ni5 doped with Nb2O5 or NbF5. Further, the pressure–concentration-isotherms analysis clarified that these interactions destabilized the Mg–H bonding, and that NbF5 had a better effect on the destabilization of the Mg–H bonding than Nb2O5 contributing to the better dehydriding property of (Mg95Ni5)2.0−NbF5.  相似文献   

8.
In this experiment, the Mg-based hydrogen storage alloys SmMg11Ni and SmMg11Ni + 5 wt.% MoS2 (named SmMg11Ni-5MoS2) were prepared by mechanical milling. By comparing the structures and hydrogen storage properties of the two alloys, it could be found that the addition of MoS2 has brought on a slight change in hydrogen storage thermodynamics, an obvious decrease in hydrogen absorption capacity, an obvious catalytic action on hydrogen desorption reaction, and a lowered onset desorption temperature from 557 to 545 K. Additionally, the addition of MoS2 could dramatically improve the alloy in its hydrogen absorption and desorption kinetics. To be specific, the hydrogen desorption times of 3 wt.% H2 at 593, 613, 633 and 653 K were measured to be 1488, 683, 390 and 192 s respectively for the SmMg11Ni alloy, which were reduced to 938, 586, 296 and 140 s for the MoS2 catalyzed SmMg11Ni alloy at identical conditions. The activation energies of the alloys with and without MoS2 for hydrogen desorption are 87.89 and 100.31 kJ/mol, respectively. The 12.42 kJ/mol decrease is responsible for the ameliorated hydrogen desorption kinetics by adding catalyst MoS2.  相似文献   

9.
The interactions of a hydrogen atom with clean, vacancied, and transition metal-doped (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Au, Pt) Mg(0001) surfaces are investigated using first-principles calculations. The H adsorption on Mg(0001) with TMs doped within the second layer is generally more stable than that on clean Mg but clearly weaker than that on Mg surfaces with TM in the first layer. We find, however, that all these TM atoms prefer to substitute for the Mg atoms in the second layer rather than for those in the outermost layer of the Mg surface. To enhance the catalytic effect of the TM dopants, we investigated various co-doping conditions of TMs, and we found that i) Ti is a good “assistant” that stabilizes co-doped Co, Ni, Pd, Ag, Pt, and Au within the first layers and that ii) Ni and Co are more easily incorporated into the first layer of a Mg surface when co-doped with Ti, V, and Nb. These observations may lead to a possible approach to stabilize the TM dopants within the first layer and thus promote the hydrogenation of Mg accordingly.  相似文献   

10.
Doping light elements into Mg-based alloy has been viewed as an effective method for improving the hydrogen storage properties without remarkably reducing hydrogen capacity. The influences of interstitial nitrogen doping on the crystal structure, thermal stability, hydrogen adsorption energy and electronic properties of Mg2Ni (0 1 0) surface were investigated by first principles calculations. The calculation results showed that the addition of interstitial N results in an anisotropic expansion in the crystal structure and a better improvement effect on lowering thermal stability of the Mg2Ni surface than the commonly used transition metal. Three stable sites including the NiNi bridge site, the top sites of Mg and Ni atoms, were determined to take in hydrogen in the pure surface. When the nonmetal N is doped into the pure surface, the number of the stable adsorption sites is increased and the adsorption energy of H in the NiNi bridge site is also increased from ?0.9614 eV for the pure to ?0.5441 eV for the N-doped counterpart. The increases in both the stable adsorption sites and the energy caused by the addition of N indicate that more hydrogen could be adsorbed in the weaker NiH bonds of the N-doped Mg2Ni alloy, thereby improving the hydrogen storage behaviors of Mg-based alloy.  相似文献   

11.
12.
Transition metals and rare-earth elements have excellent catalytic effects on improving the de-/hydrogenation properties of Mg-based alloys. In this study, a small amount of La is used to substitute the Ni in Mg98Ni2 alloy, and some Mg98Ni2-xLax (x = 0, 0.33, 0.67, and 1) alloys show the better overall hydrogen storage properties. The effects of La on the solidification and de-/hydrogenation behaviors of the alloys are revealed. The results indicate that different factors dominate the processes of hydrogen absorption and desorption. The Mg98Ni1·67La0.33 alloy absorb 7.04 wt % hydrogen at 300 °C, with the highest isothermal absorption rate, the Mg98Ni1·33La0.67 hydride show the highest isothermal desorption rates and the lowest peak desorption temperature of 327 °C. The La addition can increase the driving force of hydrogenation, thus the hydrogenation rates and capacities of the Mg98Ni1·67La0.33 and Mg98Ni1·33La0.67 alloys are improved. The formation of refined eutectic structures is a key factor that facilitates the desorption processes of the Mg98Ni2-xLax hydrides with x = 0.67 and 1. High-density LaH3 nanophses are in-situ formed from the LaMgx (8.5 < x < 12) phase, which results in the improved de-/hydrogenation properties. The further La addition deteriorates the hydrogen storage properties of Mg98Ni2-xLax alloy.  相似文献   

13.
The structure, kinetics and electrochemical characteristics of Mg2NiH4-x wt.% MmNi3.8Co0.75Mn0.4Al0.2 (x = 5, 10, 20, 40) composites prepared by mechanical milling have been investigated in this paper. XRD results indicate that the as-milled Mg2NiH4 shows nanocrystalline or amorphous-like structure, and it does not react with MmNi3.8Co0.75Mn0.4Al0.2 during mechanical milling. As the amount of MmNi3.8Co0.75Mn0.4Al0.2 increases, the maximum discharge capacity decreases initially from 508 mAh/g (x = 5) to 440 mAh/g (x = 10) and then increases to 509 mAh/g (x = 40). Meanwhile, the capacity retention (R10) increases from 12.8% (x = 5) to 23.4% (x = 40), and the corrosion potential of electrode (Ecorr) increases from −0.930 V to −0.884 V (vs. Hg/HgO). Especially, the more MmNi3.8Co0.75Mn0.4Al0.2 content the composite contains, the higher high rate dischargeability (HRD) the electrode exhibits, which could be attributed to the catalytic reaction and reduction of the Mg2NiH4 grain size brought by MmNi3.8Co0.75Mn0.4Al0.2. The improvement in electrode kinetics has been depicted from the bulk hydrogen diffusion coefficient (D), the exchange current density (I0) and the charge transfer resistance (Rct) on the alloy surface.  相似文献   

14.
Hydrogen storage is a critical step for commercialisation of hydrogen consumed energy production. Among other storage methods, solid state storage of hydrogen attracts much attention and requires extensive research. This study rationally and systematically designs novel solid state hydrides; Li2CaH4 (GHD is obtained as −6.95 wt %) and Li2SrH4 (GHD is obtained as −3.83 wt %) using computational method. As a first step, we suggest and predict crystal structures of solid state Li2CaH4 and Li2SrH4 hydrides and look for synthesizability. Then, the mechanical stabilities of hydrides are identified using elastic constants. Both hydrides fulfil the well-known Born stability criteria, indicating that both Li2CaH4 and Li2SrH4 are mechanically stable materials. Several critical parameters, bulk modulus, shear modulus, Cauchy pressures, anisotropy factors of hydrides and bonding characteristics are obtained and evaluated. Furthermore, electronic and optical band structures of hydrides are computed. Both Li2CaH4 and Li2SrH4 have indirect bands gaps as 0.96 eV (Г-U) and 1.10 eV (Г-R). Thus, both materials are electronically semiconducting. Also, Bader charge analysis of hydrides have been carried out. Charge density distribution suggests an ionic-like (or polarized covalent) bonding interaction between the atoms.  相似文献   

15.
Destabilization of LiBH4 by addition of metal hydrides or borohydrides is a powerful strategy to develop new promising hydrogen storage systems. In this study, we compare the destabilization behavior of the LiBH4 by addition of MH2 (M = La, Ce). A notable improvement in the hydrogen desorption temperature, the rate and the weight percentage of hydrogen released is observed for LiBH4-MH2 with respect to LiBH4. Formation of LaB6 and CeB6 after dehydriding of the composites is proved by PXRD. Remarkable hydrogen storage reversibility of LiBH4-MH2 composites is confirmed under moderate conditions: 400 °C and 6.0 MPa of hydrogen pressure for 4 h without catalyst. The LiBH4-LaH2 composite exhibits improved hydrogen desorption performance compared with LiBH4-CeH2 composite, but the hydrogen storage reversibility is inferior. Notably, the LiBH4-CeH2 nanocomposite produced by in situ formation of CeH2 from Ce(BH4)3-LiH displays excellent hydrogen storage properties. The addition of ZrCl4 as a catalyst improves dehydriding kinetics. The mechanism underlying the enhancement in the LiBH4-MH2 composites is also discussed. Our study is the first work about reversible hydrogen storage in LiBH4-LaH2.  相似文献   

16.
MgTM/ZIF-67 nanocomposites were prepared by the deposition-reduction method using ZIF-67, MgCl2, and TMClx (TM = Ni, Cu, Pd, Nb) as raw materials. The dehydrogenation activation energies of MgTM/ZIF-67 (TM = Ni, Cu, Pd, Nb) nanocomposites were calculated to be 115.4 kJ mol−1 H2, 115.7 kJ mol−1 H2, 113.6 kJ mol−1 H2, and 75.8 kJ mol−1 H2, respectively; hence, the MgNb/ZIF-67 nanocomposite manifested the best comprehensive hydrogen storage performance. The hydrogen storage capacity of the MgNb/ZIF-67 nanocomposite was hardly attenuated after the 100th hydrogen absorption-desorption cycle. The dehydrogenated enthalpies of MgH2 and CoMg2H5 in MgNb/ZIF-67 hydride were calculated to be 72.4 kJ mol−1 H2 and 81.0 kJ mol−1 H2, respectively, which were lower than those of additive-free MgH2 and Mg/ZIF-67. The improved hydrogen storage properties of MgNb/ZIF-67 can be ascribed to the CoMg2–Mg(Nb) core-shell structure and the catalytic effects of NbH and niobium oxide nanocrystals.  相似文献   

17.
Profuse mechanical dehydrogenation occurs during controlled high energy ball milling of LiAlH4 containing 5 wt.% of the nanometric interstitial compounds such as n-TiC, n-TiN and n-ZrC which involves a gradual decomposition of LiAlH4 to the mixture of Li3AlH6 and Al (Stage I) followed by a further decomposition of Li3AlH6 to the mixture of Al and LiH (Stage II). XRD reveals that the interstitial compounds remain stable in the hydride matrix during entire ball milling duration. The effectiveness of the nanometric interstitial compound additives for mechanical dehydrogenation increases on the order of n-TiN > n-TiC > n-ZrC. X-ray diffraction (XRD) reveals that there is no measurable change in a unit cell volume of LiAlH4 after ball milling which indicates that an accelerated mechanical dehydrogenation of LiAlH4 containing the nanometric interstitial compounds is unrelated to the lattice expansion as we have already reported for the nanometric metal Fe (n-Fe). In addition, the observed strong catalytic activity of the nanometric interstitial compounds for mechanical dehydrogenation is not related to their valence electron concentration (VEC) number. However, the n-TiN additive, which is the most effective one for mechanical dehydrogenation, has the smallest average particle size of 20 nm and the largest Specific Surface Area (SSA > 80 m2/g). For thermal dehydrogenation in Stage I the average apparent activation energy, EA, for the interstitial compound additives is within the range of 87–96 kJ/mol whereas, for comparison, the nanometric metallic additives, n-Fe and n-Ni, exhibit drastically smaller apparent activation energy on the order of 55–70 kJ/mol. The average apparent activation energy for thermal dehydrogenation in Stage II is in the range of 63–80 kJ/mol in the order of EA(n-ZrC) < EA(n-Ti = n-TiC) and is lower than that for the nanometric metal additives n-Ni and n-Fe. In summary, the nanometric interstitial compounds do not substantially affect the apparent activation energy of Stage I but are able to reduce the apparent activation energy of thermal dehydrogenation in Stage II. XRD reveals that the interstitial compounds remain stable in the hydride matrix up to the dehydrogenation temperature of at least 165 °C. Ball milled LiAlH4 containing 5 wt.% n-TiC, n-TiN and n-ZrC is able to slowly discharge large quantities of H2 up to 5–6 wt.% during storage at 40 °C. Unfortunately, the results of rehydrogenation at 165 °C under 95 bar for 5 h indicate that LiAlH4 containing the nanometric interstitial compounds exhibits no rehydrogenation.  相似文献   

18.
The various Mg–B–Al–H systems composed of Mg(BH4)2 and different Al-sources (metallic Al, LiAlH4 and its decomposition products) have been investigated as potential hydrogen storage materials. The role of Al was studied on the dehydrogenation and the rehydrogenation of the systems. The results indicate that the different Al-sources exhibit a similar improving effect on the dehydrogenation properties of Mg(BH4)2. Taking the Mg(BH4)2 + LiAlH4 system as an example, at first LiAlH4 rapidly decomposes into LiH and Al, then Mg(BH4)2 decomposes into MgH2 and B, finally the MgH2 reacts with Al, LiH and B, which forms Mg3Al2 and MgAlB4. The system starts to desorb H2 at 140 °C and desorbs 3.6 wt.% H2 below 300 °C, while individual Mg(BH4)2 starts to desorb H2 at 250 °C and desorbs only 1.3 wt.% H2 below 300 °C. The isothermal desorption kinetics of the Mg–B–Al–H systems is about 40% faster than that of Mg(BH4)2 at the hydrogen desorption ratio of 90%. In addition, the Mg–B–Al–H systems show partial reversibility at moderate temperature and pressure. For Al-added system, the product of rehydrogenation is MgH2, while for LiAlH4-added system the product is composed of LiBH4 and MgH2.  相似文献   

19.
We study the CO2 hydrogenation to methanol on subnanometer Pd7 and transition metal doped Pd6M (M = Cu, Ni, Pt, and Rh) clusters using a combination of density functional theory and microkinetic calculations. We find that, in general, the inclusion of transition metal dopants could decrease the activation energy of several important elementary reactions. This condition results in a significant improvement in the activity of the catalyst, especially for the Pd6Ni cluster. We find that the Pd6M clusters are more selective toward the formate pathway than the RWGS + CO hydrogenation pathway. We also compare the turnover frequency profiles of the clusters with that of the Cu(111) surface, representing the standard industrial catalyst. We find that the Pd6Ni cluster can successfully overcome the TOF of Cu(111) surface, even at the low-pressure condition.  相似文献   

20.
The effects of 8-h annealing at 960 °C on the gaseous phase hydrogen storage and electrochemical properties of partial-Ni substituted Zr8Ni21 alloys were studied. The substituting elements included Mg, Al, Sc, V, Mn, Co, Sn, La, and Hf. Only the main phase of the annealed Sn-substitution remained Zr8Ni21-structured while those of other substitutions turned into Zr7Ni10 or Zr2Ni7. The observed trend in maximum gaseous phase hydrogen storage capacity followed the increasing order of B/A ratio of the main phase as orthogonal Zr7Ni10 > tetragonal Zr7Ni10 > Zr8Ni21 > Zr2Ni7. After annealing, due to the increase in abundance of the main phase, the maximum gaseous phase hydrogen storage capacities of alloys with higher capacities before annealing increased while others decreased. The full discharge capacity also improved in the same increasing order of B/A ratio in the main phase. Hf-substitution showed the highest electrochemical discharge capacity at 200 mAh g−1. After annealing, all alloys with the same main phase as the as-cast alloys showed degradation in full electrochemical capacity due to the reduction in both number and abundance of the catalytic secondary phases. All supplements assisted in improving surface exchange current from the base binary Zr8Ni21 alloy. Except for La- and Hf-substitutions, annealing reduced the surface exchange current density. The bulk hydrogen diffusion coefficient decreased with most of the supplements except for V- and Sn-substitutions. All supplements, except for Sc, showed improvement in the bulk diffusion after annealing. Furthermore, the maximum gaseous phase hydrogen storage capacity showed a strong correlation to the full electrochemical discharge capacity. Among all alloys in this study, the as-cast Hf-substituted Zr8Ni21 alloy demonstrated the best overall gaseous hydrogen storage and electrochemical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号