首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bio-oil has been produced from palm kernel shell in a fluidized bed reactor. The process conditions were optimized and the detailed characteristics of bio-oil were carried out. The higher feeding rate and higher gas flow rate attributed to higher bio-oil yield. The maximum mass fraction of biomass (57%) converted to bio-oil at 550 °C when 2 L min−1 of gas and 10 g min−1 of biomass were fed. The bio-oil produced up to 500 °C existed in two distinct phases, while it formed one homogeneous phase when it was produced above 500 °C. The higher heating value of bio-oil produced at 550 °C was found to be 23.48 MJ kg−1. As GC–MS data shows, the area ratio of phenol is the maximum among the area ratio of identified compounds in 550 °C bio-oil. The UV–Fluorescence absorption, which is the indication of aromatic content, is also the highest in 550 °C bio-oil.  相似文献   

2.
An integrated power system of biomass gasification with solid oxide fuel cells (SOFC) and micro gas turbine has been investigated by thermodynamic model. A zero-dimensional electrochemical model of SOFC and one-dimensional chemical kinetics model of downdraft biomass gasifier have been developed to analyze overall performance of the power system. Effects of various parameters such as moisture content in biomass, equivalence ratio and mass flow rate of dry biomass on the overall performance of system have been studied by energy analysis.It is found that char in the biomass tends to be converted with decreasing of moisture content and increasing of equivalence ratio due to higher temperature in reduction zone of gasifier. Electric and combined heat and power efficiencies of the power system increase with decreasing of moisture content and increasing of equivalence ratio, the electrical efficiency of this system could reach a level of approximately 56%.Regarding entire conversion of char in gasifier and acceptable electrical efficiency above 45%, operating condition in this study is suggested to be in the range of moisture content less than 0.2, equivalence ratio more than 0.46 and mass flow rate of biomass less than 20  kg h−1.  相似文献   

3.
《Journal of power sources》2004,137(2):206-215
We evaluated the performance of system combining a solid oxide fuel cell (SOFC) stack and a polymer electrolyte fuel cell (PEFC) stack by a numerical simulation. We assume that tubular-type SOFCs are used in the SOFC stack. The electrical efficiency of the SOFC–PEFC system increases with increasing oxygen utilization rate in the SOFC stack. This is because the amount of exhaust heat of the SOFC stack used to raise the temperature of air supplied to it decreases as its oxygen utilization rate increases and because that used effectively as the reaction heat of the steam reforming reaction of methane in the stack reformer increases. The electrical efficiency of the SOFC–PEFC system at 190 kW ac is 59% (LHV), which is equal to that of the SOFC-gas turbine combined system at 1014 kW ac.  相似文献   

4.
During long term operation at high temperature, creep is inevitable and can cause damages and cracks, which should be decreased to ensure the stack integrity. A strain based creep damage model is used to predict the creep damage behavior of a planar solid oxide fuel cell (SOFC). It demonstrates the maximum creep damage locates at the corner of glass-ceramic (GC) facing the frame after 50 000 h creep. The effect of frame material on the creep is studied. By increasing the creep parameter B of frame, the creep and damage in the cell and GC are decreased. This indicates the frame with a larger creep parameter can alleviate the interaction between components and decrease the deformation of the system. It recommends to use frame materials which have creep parameters larger than 1.3752 × 10−15 MPa-nh−1 besides CTEs closed to the cell to compensate and mitigate the creep and damage of SOFC system.  相似文献   

5.
In this study, a solid oxide electrolyzer cell (SOEC) stack model is developed based on an alternative mapping concept. The SOEC stack performance in a commercial hot box is systematically studied under different operating currents, flow rates, and flow directions. The results revealed that the SOEC stack operated in a hot box has thoroughly different temperature distributions, resulting in additional efficiency losses and an increase in thermal neutral voltage. The SOEC stack model computation results are summarized into stack performance diagrams and used in the system design. A 6-Nm3/h SOEC system with preheaters and recycling cathode materials is designed, and its performance is studied. The system efficiency is greatly influenced by the steam generator, and an external steam source can help increase the total efficiency of the system to more than 83%. Even the current increase may deteriorate the stack performance. It can increase the SOEC system efficiency by saving energy in the steam generator and preheaters. An increase in the flow rate around anode and cathode can improve the system capacity and efficiency. The system's maximum capacity is limited by the preheater heat balance and the stack output temperature. The feasible maximum system capacity is 33.4 kW electrolysis electric power input and 9.93 Nm3/h hydrogen production rate. At a constant system capacity, decreasing the air flow rate can minimize the heat losses in anode off-gas and achieve more than 87% nonsteam system efficiency.  相似文献   

6.
《Journal of power sources》2006,156(2):321-333
Solid oxide fuel cell combined heat and power (CHP) is a promising technology to serve electricity and heat demands. In order to analyse the potential of the technology, a detailed techno-economic energy-cost minimisation model of a micro-CHP system is developed drawing on steady-state and dynamic SOFC stack models and power converter design. This model is applied it to identify minimum costs and optimum stack capacities under various current density change constraints. Firstly, a characterisation of the system electrical efficiency is developed through the combination of stack efficiency profiles and power converter efficiency profiles. Optimisation model constraints are then developed, including a limitation in the change of current density (A cm−2) per minute in the stack. The optimisation model is then presented and further expanded to account for the inability of a stack to respond instantaneously to load changes, resulting in a penalty function being applied to the objective function proportional to the size of load changes being serviced by the stack. Finally, the optimisation model is applied to examine the relative importance, in terms of minimum cost and optimum stack maximum electrical power output capacity, of the limitation on rate of current density change for a UK residential micro-CHP application. It is found that constraints on the rate of change in current density are not an important design parameter from an economic perspective.  相似文献   

7.
In this study, both energetic and exergetic performances of a combined heat and power (CHP) system for vehicular applications are evaluated. This system proposes ammonia-fed solid oxide fuel cells based on proton conducting electrolyte (SOFC-H+) with a heat recovery option. Fuel consumption of combined fuel cell and energy storage system is investigated for several cases. The performance of the portable SOFC system is studied in a wide range of the cell’s average current densities and fuel utilization ratios. Considering a heat recovery option, the system exergy efficiency is calculated to be 60-90% as a function of current density, whereas energy efficiency varies between 60 and 40%, respectively. The largest exergy destructions take place in the SOFC stack, micro-turbine, and first heat exchanger. The entropy generation rate in the CHP system shows a 25% decrease for every 100 °C increase in average operating temperature.  相似文献   

8.
《Journal of power sources》2006,161(1):380-391
A three-dimensional thermo-fluid–electrochemical model is developed to study the heat/mass transport process and performance of a solid oxide fuel cell (SOFC). The main objectives are to examine the transport channel size effects and to assess the potential of a thin-film-SOFC. A parametric study was performed to evaluate the channel scale effects on the temperature, species concentration, local current density and power density. The results demonstrate that decreasing the height of flow channels can lower the average solid temperature and improve cell efficiency. However, this improvement is rather limited for the smallest channels. Compared with the conventionally sized SOFC, the miniaturized SOFC with a thin-film electrolyte has the advantages of a lower operating temperature and a better performance. Based on our simulation results, the power density of a miniaturized SOFC could reach up to 5.461 W cm−3. However, an extremely small structure will lead to severe thermal stress induced by a large temperature gradient, a cell with a thicker rib width would have a higher efficiency and a lower average temperature. Numerical simulation is expected to help optimize the design of a solid oxide fuel cell.  相似文献   

9.
This research attempts to ensure system safety while to maximize system efficiency by addressing steady state analysis and optimization for solid oxide fuel cell (SOFC) systems. Firstly, a thermal management oriented kW scale SOFC stand-alone system (primarily comprising a planar SOFC stack, a burner, and two heat exchangers) is developed, in which a special consideration for stack spatial temperature management is conducted by introducing an air bypass manifold around heat exchangers. The dynamic model of the system is performed using transient energy, species, and mass conservation equations. Secondly, based on the system model, the effects of operating parameters including fuel utilization (FU), air excess ratio (AE), bypass ratio (BR), and stack voltage (SV) on the system steady-state performances (e.g. system efficiency, stack inlet, stack outlet, and burner temperatures) are revealed. Particularly, an optimal relationship between the system efficiency and the operating parameters is proposed; the maximum system efficiency can certainly be obtained at the inlet outlet temperature critical point of the BR-AE or FU-AE planes for all SV operating points. Finally, according to the optimal relationship, a traverse optimization process is designed, and the maximum system efficiency and safe operating parameters at any efficient SV operating point are calculated. The results provide an optimal reference trajectory for control design, where the system is safe and efficiency optimization. Moreover, the results reveal two important system characteristics: (1) the burner operates within safe temperature zone as long as the temperature of the upstream stack is well controlled; (2) the control design for the system is a nonlinear optimal control with switching structure, which is a challenging control issue.  相似文献   

10.
In the solid oxide fuel cell (SOFC) system, the internal reforming of raw fuel will act as an efficient cooling system. To realize this cooling system, a special design of the internal reformer is required to avoid the inhomogeneous temperature distribution caused by the strong endothermic reforming reaction at the entrance of the internal reformer. For this purpose, a tubular internal reformer with adjusted catalyst density can be inserted into the tubular SOFC stack. By arranging this, the raw fuel flows along the axis of the internal reformer to be moderately reformed and returns at the end of the internal reformer as a sufficiently reformed fuel.In this paper, the output characteristics of this configuration are simulated using mathematical models, in which one-dimensional temperature and molar distributions are computed along the flow direction. By properly mounting the catalyst density in the internal reformer, the temperature distribution of the cell stack becomes moderate, and the power generation efficiency and the exhaust gas temperature are higher. Effects of other operating conditions such as fuel recirculation, fuel inlet temperature, air recirculation and air inlet temperature are also examined under the condition where the maximum temperature of the stack is kept at 1300 K by adjusting the air flow rate. Under this condition, these operating conditions exert a considerable effect on the exhaust temperature but have a slight effect on the efficiency.  相似文献   

11.
We propose a system that combines a seal-less planar solid oxide fuel cell (SOFC) stack and polymer electrolyte fuel cell (PEFC) stack. In the proposed system, fuel for the SOFC (SOFC fuel) and fuel for the PEFC (PEFC fuel) are fed to each stack in parallel. The steam reformer for the PEFC fuel surrounds the seal-less planar SOFC stack. Combustion exhaust heat from the SOFC stack is used for reforming the PEFC fuel. We show that the electrical efficiency in the SOFC–PEFC system is 5% higher than that in a simple SOFC system using only a seal-less planar SOFC stack when the SOFC operation temperature is higher than 973 K.  相似文献   

12.
《Journal of power sources》2006,155(2):203-212
The characteristics of a 50 W direct methanol fuel cell (DMFC) stack were investigated under various operating conditions in order to understand the behavior of the stack. The operating variables included the methanol concentration, the flow rate and the flow direction of the reactants (methanol and air) in the stack. The temperature of the stack was autonomously increased in proportion to the magnitude of the electric load, but it decreased with an increase in the flow rates of the reactants. Although the operation of the stack was initiated at room temperature, under a certain condition the internal temperature of the stack was higher than 80 °C. A uniform distribution of the reactants to all the cells was a key factor in determining the performance of the stack. With the supply of 2 M methanol, a maximum power of the stack was found to be 54 W (85 mW cm−2) in air and 98 W (154 mW cm−2) in oxygen. Further, the system with counter-flow reactants produced a power output that was 20% higher than that of co-flow system. A post-load behavior of the stack was also studied by varying the electric load at various operating conditions.  相似文献   

13.
The simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell–Gas Turbine (SOFC–GT) power system are discussed in this paper. In the SOFC reactor model, it is assumed that only hydrogen participates in the electrochemical reaction and that the high temperature of the stack pushes the internal steam reforming reaction to completion; the unreacted gases are assumed to be fully oxidized in the combustor downstream of the SOFC stack. Compressors and GTs are modeled on the basis of their isentropic efficiency. As regards the heat exchangers and the heat recovery steam generator, all characterized by a tube-in-tube counterflow arrangement, the simulation is carried out using the thermal efficiency-NTU approach. Energy and exergy balances are performed not only for the whole plant but also for each component in order to evaluate the distribution of irreversibility and thermodynamic inefficiencies. Simulations are performed for different values of operating pressure, fuel utilization factor, fuel-to-air and steam-to-fuel ratios and current density. Results showed that, for a 1.5 MW system, an electrical efficiency close to 60% can be achieved using appropriate values of the most important design variables; in particular, the operating pressure and cell current density. When heat loss recovery is also taken into account, a global efficiency of about 70% is achieved.  相似文献   

14.
Solid oxide fuel cell (SOFC) systems have been recognized as the most advanced power generation system with the highest thermal efficiency with a compatibility with wide variety of hydrocarbon fuels, synthetic gas from coal, hydrogen, etc. However, SOFC requires high temperature operation to achieve high ion conductivity of ceramic electrolyte, and thus SOFC should be heated up first before fuel is supplied into the stack. This paper presents computational model for thermal dynamics of planar SOFC stack during start-up process. SOFC stack should be heated up as quickly as possible from ambient temperature to above 700 °C, while minimizing net energy consumption and thermal gradient during the heat up process. Both cathode and anode channels divided by current-collecting ribs were modeled as one-dimensional flow channels with multiple control volumes and all the solid structures were discretized into finite volumes. Two methods for stack-heating were investigated; one is with hot air through cathode channels and the other with electric heating inside a furnace. For the simulation of stack-heating with hot air, transient continuity, flow momentum, and energy equation were applied for discretized control volumes along the flow channels, and energy equations were applied to all the solid structures with appropriate heat transfer model with surrounding solid structures and/or gas channels. All transient governing equations were solved using a time-marching technique to simulate temporal evolution of temperatures of membrane-electrode-assembly (MEA), ribs, interconnects, flow channels, and solid housing structure located inside the insulating chamber. For electrical heating, uniform heat flux was applied to the stack surface with appropriate numerical control algorithm to maintain the surface temperature to certain prescribed value. The developed computational model provides very effective simulation tool to optimize stack-heating process minimizing net heating energy and thermal gradient within the stack.  相似文献   

15.
In this study, global warming, environmental and sustainability aspects of a geothermal energy based biodigester integrated SOFC system are parametrically analyzed. In this regard, a system is designed, consisting of three main subsystems such as Solid Oxide Fuel Cell, Anaerobic Digester, and a Heat Recovery Steam Generator. In order to investigate the global warming, environmental and sustainability aspects of the system, the energy and exergy analyses are performed, and the following indicators are taken into consideration, which are i) unit CO2 emission, ii) environmental effect factor, iii) waste exergy ratio, iv) exergy destruction ratio, v) exergy recovery ratio, vi) exergetic sustainability index. Accordingly, the maximum exergetic sustainability index and exergy efficiency of the integrated system are calculated to be 0.486 and 0.367, respectively, in case the SOFC inlet temperature is equal to 633.3 °C while electric current density is 5500 A/m2. On the other hand, the minimum exergy destruction ratio and the minimum environmental effect factor are obtained to be 0.74 and 2.33 while SOFC inlet temperature is 633.3 °C and SOFC current density is 8000 A/m2. The minimum unit CO2 emission of the whole system is determined to be 368.4 kg/MWh at 5500 A/m2 of SOFC current density and 727 °C of SOFC inlet temperature while determined as 258.3 kg/MWh at 8000 A/m2 of SOFC current density and 680 °C of SOFC inlet temperature. Thus, it can be said that such a system may be applied for reducing the CO2 based global warming effects and improving the environmental sustainability.  相似文献   

16.
In this work, the trigeneration system, consisting of a proton-conducting solid oxide fuel cell (SOFC–H+) and a single-stage LiBr absorption chiller, was proposed. The SOFC–H+ and single-stage LiBr absorption chiller models were developed through Aspen Plus V10. From the sensitivity analysis, the results show that increases in temperature and fuel utilization can improve the performance of the SOFC–H+. Conversely, the air to fuel (A/F) molar ratio and pressure negatively affect the electrical efficiency and overall system efficiency. In the case of the absorption chiller, the coefficient of performance was increased and made stable according to a constant value when the generator temperature was increased from 90 to 100 °C. When the optimization was performed, it was found that the SOFC–H+ should be operated at 700 °C and 10 bar with fuel utilization of 0.8 and A/F molar ratio of 2 to achieve a maximum overall efficiency of 93.34%. For the energy and exergy analysis, a combined heat and power SOFC–H+ was found to have the highest energy and exergy efficiencies, followed by the trigeneration process. This indicates that the integration of the SOFC–H+ and LiBr absorption chiller is possible to efficiently produce electricity, heating and cooling.  相似文献   

17.
《Journal of power sources》2006,158(1):378-384
This paper explores the possibility of improving the power density of a solid oxide fuel cell (SOFC). A three-dimensional computational model (CFD-ACE package), with the relevant sub-models was used for the study. The performance of the SOFC was examined with a thin wall, which splits the inlet section and runs up to half the length of the flow channels. The results obtained with this (thin-walled) geometry were consistently better than those obtained with plain geometry (without the thin wall). The polarization characteristics of the thin-walled geometry indicated that the maximum power density obtained was 1.18 W cm−2 at an efficiency of around 60%. The corresponding values of maximum power density and the efficiency at which it was obtained for a plain geometry were 0.88 W cm−2 and 50%, respectively. The enhanced performance of the thin-walled geometry was attributed to a better distribution of the reactants along the length of the SOFC. Studies were also conducted to verify the performance of the thin-walled geometry over a wide range of inlet mass flow rates. They revealed a superior performance of the thin-walled geometry compared to the plain geometry. At lower inlet mass flow rates, the difference between the two in performance was small, but at higher inlet mass flow rates the difference in performance was significant.  相似文献   

18.
The uniform temperature distribution of a cross-flow planar solid oxide fuel cell (SOFC) stack plays an essential role in stack thermal safety and electrical property. However, because of the strict requirements in stack sealing struture, it is hard to acquire the temperature inside the stack using thermal detection devices within an acceptable cost. Therefore, accurately estimating the two-dimensional (2-D) temperature distribution of the cross-flow stack is crucial for its thermal management. In this paper, Firstly, a 2-D mechanism model of a cross-flow planar SOFC stack is established. The stack is divided into 5*5 nodes along the gas flow directions, which can reflect the stack states with moderate computational burden. Then, experimental test data is utilized to modify and validate the stack model, guaranteeing the model accuracy as well as the reliability of model-based state estimator design. Finally, easily-measured stack inputs and outputs are selected, and a temperature distribution estimator combined with unscented kalman filter (UFK) approach is developed to achieve accurate and fast temperature distribution estimation of a cross-flow SOFC stack. Simulation results demonstrate that the UKF-based temperature distribution estimator can precisely and quickly achieve the temperature distribution estimation of the cross-flow stack under both static state and dynamic state changes and is applicable to cross-flow stacks with different size or cell number as well, the maximum estimated absolute error is less than 0.15 K with an absolute error rate of 0.015%, which indicates the developed estimator has good estimation performances.  相似文献   

19.
In order to eliminate the local CO2 emissions from vehicles and to combat the associated climate change, the classic internal combustion engine can be replaced by an electric motor. The two most advantageous variants for the necessary electrical energy storage in the vehicle are currently the purely electrochemical storage in batteries and the chemical storage in hydrogen with subsequent conversion into electrical energy by means of a fuel cell stack. The two variants can also be combined in a battery electric vehicle with a fuel cell range extender, so that the vehicle can be refuelled either purely electrically or using hydrogen. The air compressor, a key component of a PEM fuel cell system, can be operated at different air excess and pressure ratios, which influence the stack as well as the system efficiency. To asses the steady state behaviour of a PEM fuel cell range extender system, a system test bench utilising a commercially available 30 kW stack (96 cells, 409 cm2 cell area) was developed. The influences of the operating parameters (air excess ratio 1.3 to 1.7, stack temperature 20 °C–60 °C, air compressor pressure ratio up to 1.67, load point 122 mA/cm2 to 978 mA/cm2) on the fuel cell stack voltage level (constant ambient relative humidity of 45%) and the corresponding system efficiency were measured by utilising current, voltage, mass flow, temperature and pressure sensors. A fuel cell stack model was presented, which correlates closely with the experimental data (0.861% relative error). The air supply components were modelled utilising a surface fit. Subsequently, the system efficiency of the validated model was optimised by varying the air mass flow and air pressure. It is shown that higher air pressures and lower air excess ratios increase the system efficiency at high loads. The maximum achieved system efficiency is 55.21% at the lowest continuous load point and 43.74% at the highest continuous load point. Future work can utilise the test bench or the validated model for component design studies to further improve the system efficiency.  相似文献   

20.
This work presents open cathode low temperature polymer electrolyte membrane fuel cell stack development and validation process project performed at HySA Systems as a part of a long-term programme funded by Department of Science and Innovation in South Africa. A detailed explanation of the stack design, manufacturing, assembly and validation is given as well as detailed analysis of results is presented. Prototype stack has an electrode active area of 50 cm2, bipolar plates made of graphite composite material (Eisenhuth) and membrane electrode assemblies manufactured in South Africa - HyPlat (Pty) Ltd. A short 10-cell stack is validated using FuelCon Evaluator stack test station and custom designed stack control system integrated with complete balance of plant components. The stack maximum current and power densities are 1.2 Acm−2 at 0.5 V and 0.6 Wcm−2, respectively. Performed current hold (300 h) and open circuit voltage (60 h) durability tests resulted in degradation rates of 0.64 mVh−1 and 3.83 mVh−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号