首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nozzle effect on heat transfer and CO emission of impinging premixed flames   总被引:1,自引:0,他引:1  
Experiments were carried out to investigate the heat transfer and CO emission characteristics of a premixed LPG/air circular flame jet impinging upwards normal to a flat plate. The effects of nozzle diameter and nozzle arrangement on the heat transfer and CO emission under different fuel/air mixture flow rates (Qmix), equivalence ratios (Ф) and normalized nozzle-to-plate distances (H/d) were examined. For the effect of nozzle diameter, burners of nozzle diameters of d = 7.9, 9 and 10 mm were used, and for the effect of nozzle arrangement, a twin-nozzle burner and a triple-nozzle burner, each with a cross-sectional area equal to that of the 9 mm diameter burner, were investigated under different normalized jet-to-jet spacing, S/d, of 3, 5 and 7. The heat transfer rate and CO emission index (EICO) are enhanced significantly with the decrease in the nozzle diameter for the single-nozzle flames. For the twin- and triple-nozzle flames, when the other operational conditions including Qmix, Ф and H/d are invariant, the moderate S/d of 5 gives the highest heat transfer rate, whereas the EICO increases with increasing S/d. Comparison of the flames from all the burners shows that the highest heat transfer rate and EICO are obtained on the single-nozzle burner with the smallest nozzle diameter while the lowest heat transfer rate and EICO are obtained on the triple-nozzle burner with the smallest S/d.  相似文献   

2.
Experimental measurements of adiabatic burning velocity and NO formation in (CH4 + H2) + (O2 + N2) flames are presented. The hydrogen content in the fuel was varied from 0 to 35% and the oxygen content in the air from 20.9 to 16%. Nonstretched flames were stabilized on a perforated plate burner at 1 atm. The heat flux method was used to determine burning velocities under conditions when the net heat loss of the flame is zero. Adiabatic burning velocities of methane + hydrogen + nitrogen + oxygen mixtures were found in satisfactory agreement with the modeling. The NO concentrations in these flames were measured in the burnt gases at a fixed distance from the burner using probe sampling. In lean flames, enrichment by hydrogen has little effect on [NO], while in rich flames, the concentration of nitric oxide decreases significantly. Dilution by nitrogen decreases [NO] at any equivalence ratio. Numerical predictions and trends were found in good agreement with the experiments. Different responses of stretched and nonstretched flames to enrichment by hydrogen are demonstrated and discussed.  相似文献   

3.
Extinction of steady, spherical diffusion flames stabilized by a spherical porous burner was investigated by activation energy asymptotics. An optically-thin radiation model was employed to study the effect of radiation on flame extinction. Four model flames with the same adiabatic flame temperature and fuel consumption rate but different stoichiometric mixture fraction and flow direction, namely the flames with fuel issuing into air, diluted fuel issuing into oxygen, air issuing into fuel, and oxygen issuing into diluted fuel, were adopted to understand the relative importance of residence time and radiation intensity. Results show that for a specified flow rate emerging from the burner, only the kinetic extinction limit at low Damköhler numbers (low residence times) exists. In the presence of radiative heat loss, extinction is promoted so that it occurs at a larger Damköhler number. By keeping the radiation intensity constant while varying the flow rate, both the kinetic and radiative extinction limits, representing the smallest and largest flow rates, between which steady burning is possible, are exhibited. For flames with low radiation intensity, extinction is primarily dominated by residence time such that the high-flow rate flames are easier to be extinguished. The opposite is found for flames suffering strong radiative heat loss. The kinetic extinction limit might occur at mass flow rates lower than what is needed to keep the flame outside of the burner and not observable. An extinction state on the radiative extinction branch can be either kinetic or radiative depending on the process.  相似文献   

4.
An experimental study to identify the effect of hydrogen enrichment and differential diffusion on the flame broadening is conducted. Turbulent lean premixed flames in the Broadened Preheat–Thin Reaction (BP-TR) regime are obtained. The flames are stabilized on a Bunsen burner and CH4/H2/air mixtures are adopted with three hydrogen fractions of 0, 30% and 60%. The preheat zone and heat release zone are captured with the multi-species Planar Laser-Induced Fluorescence (PLIF) of OH and CH2O radicals. Flame thicknesses of the preheat and heat release layers are measured. Results show broadened preheat zone and thin heat release layers for the flames, as predicted by the BP-TR regime. The preheat zone thickness can be increased to about 3–6 times compared to the laminar preheat thickness. An apparently decreased preheat zone thickness with hydrogen addition is observed. The differential diffusion is anticipated to locally thicken the heat release zone along the flame front. The mean heat release thickness is nearly not affected by the turbulence or hydrogen addition.  相似文献   

5.
《能源学会志》2020,93(3):1099-1109
Large eddy simulation (LES) of constant adiabatic temperature, hydrogen-piloted, turbulent lean premixed methane/air jet flames with varying amounts of CO2 addition are reported. Constant adiabatic temperature is achieved by increasing the fuel flow rate slightly to account for the higher specific heat of CO2 compared to N2. Such flames are relevant to low NOx gas turbines with high hydrogen content fuels and Exhaust Gas Recirculation (EGR). A newly designed burner called Piloted Axisymmetric Reactor Assisted Turbulent (PARAT) flame burner was utilized. The operating conditions in the experiment were selected to highlight the kinetic effects of CO2 addition by matching the Reynolds numbers, Lewis numbers and adiabatic flame temperatures. The LES simulations utilize a finite rate chemistry solver with DRM19 combustion mechanism with adaptive zoning and a dynamic structure turbulence model. A five-level adaptive mesh refinement (AMR) improves the velocity and temperature gradient resolution. The LES predicts the experimentally observed increase in flame length with CO2 levels caused by a decrease in the turbulent flame speed. The computational results also capture the experimentally observed departure from the thin flame limit and a collapse of the root mean square (RMS) versus mean temperature profiles for the three levels of CO2. The flame structure analysis showed super-equilibrium CO concentrations because of non-equilibrium chemistry effects caused by the external addition of CO2.  相似文献   

6.
Sodium borohydride (NaBH4) hydrogen storage systems offer many advantages for hydrogen storage applications. The physical processes inside a NaBH4 packed bed reactor involve multi-component and multi-phase flow and multi-mode heat and mass transfer. These processes are also coupled with reaction kinetics. To guide reactor design and optimization, a reactor model involving all of these processes is desired. A one-dimensional numerical model in conjunction with the assumption of homogeneous catalysis is developed in this study. Two submodels have been created to simulate non-isothermal water evaporation processes and pressure drop of two-phase flow through the porous medium. The diffusion coefficient of liquid inside the porous catalyst pellets and the mass transfer coefficient of water vapor are estimated by fitting experimental data at one specified condition and have been verified at other conditions. The predicted temperature profiles, fuel conversion, relative humidity and pressure drops match experimental data reasonably well.  相似文献   

7.
Bioethanol as the renewable biomass fuel gradually becomes a promising feedstock for hydrogen production. To improve the efficiency of hydrogen production, a typical double-layer porous media burner was established for the partial oxidation reaction of ethanol (POE). The effects of porous media structure, initial ethanol and air conditions on the temperature distribution and gas production were investigated based on the start-up characteristics of the burner. The results indicate that the lowest start-up time (2400 s) and best hydrogen production (9.80%) were obtained by filling the downstream section with 8 mm Al2O3 pellets and introducing ethanol at the upstream inlet, compared with that of 6 and 10 mm pellets. The productions of methane and hydrogen were improved to some extent by adding the water with 10% fraction. And the highest concentration of hydrogen was achieved at the air velocity of 8 cm/s. When the O2/C ratios were 0.2 and 0.25, the maximum hydrogen yield (23.28%) and ethanol conversion (77.42%) were obtained respectively.  相似文献   

8.
多孔介质中预混火焰猝熄及自稳定性研究   总被引:3,自引:0,他引:3  
分析了多孔介质中预混火焰的猝熄效应,试验测定了一系列工况下泡沫陶瓷的猝熄直径和自稳定范围,为多孔介质燃烧器的开发设计提供了依据。通过分析发现,猝熄直径受到多个参数的影响,包括:混合气体的流速u、预混气体的层流火焰传播速度SL、燃烧室空管Re、预混气体的导温系数a、当量比φ以及多孔介质固体温度Ts。通过对多孔介质中燃烧的自稳定性试验研究,发现了多孔介质燃烧器中火焰稳定极限(吹脱极限和回火极限)与多孔介质平均孔径和气流速度及燃烧当量比的关系。  相似文献   

9.
Adiabatic burning velocities of premixed flat flames and propagation speeds of adiabatic cellular flames of mixtures of ethane+oxygen+carbon dioxide are reported. The oxygen content O2/(O2+CO2) in the artificial air was varied from 26 to 35%. Nonstretched flames were stabilized on a perforated plate burner at 1 atm. A heat flux method was used to determine burning velocities under conditions when the net heat loss of the flame is zero. Under specific experimental conditions the flames become cellular; this leads to significant modification of the flame propagation speed. Measurements in cellular flames are presented and compared with those for laminar flat flames and also with qualitative predictions of a theoretical model. The onset of cellularity was observed throughout the stoichiometric range of the mixtures studied. Cellularity disappears when the flames become only slightly subadiabatic.  相似文献   

10.
《Combustion and Flame》1999,116(1-2):177-191
A two-dimensional model of two simple porous burner geometries is developed to analyze the influence of multidimensionality on flames within pore scale structures. The first geometry simulates a honeycomb burner, in which a ceramic is penetrated by many small, straight, nonconnecting passages. The second geometry consists of many small parallel plates aligned with the flow direction. The Monte Carlo method is employed to calculate the viewfactors for radiation heat exchange in the second geometry. This model compares well with experiments on burning rates, operating ranges, and radiation output. Heat losses from the burner are found to reduce the burning rate. The flame is shown to be highly two-dimensional, and limitations of one-dimensional models are discussed. The effects of the material properties on the peak burning rate in these model porous media are examined. Variations in the flame on length scales smaller than the pore size are also present and are discussed and quantified.  相似文献   

11.
The conversion of nitric oxide (using CNG/air as fuel/oxidizer) inside a porous medium is investigated in this study. Unlike freely propagating flames, porous burners provide a solid medium that facilitates heat exchange with the gaseous phase. The heat exchange allows the stabilization of a variety of fuel mixtures from lean to rich and with a variety of calorific values. In addition, it allows the control of the reaction zone temperature and thus the control of pollutant formation while maintaining flame stability. An experimental porous burner was designed and manufactured for this purpose. The effects of equivalence ratio and flow velocity on the flame stabilization, NOx and TFN (total fixed nitrogen) conversion ratios, and temperature profiles along the burner are investigated. In addition, numerical calculations using the PLUG flow simulator model and the GRI 3.0 kinetic mechanism reveals the key reactions which control the conversion efficiency. It was found that under slightly fuel-rich conditions (φ?1.3) NOx mostly converts to N2 with a maximum conversion ratio of 65%, while for higher equivalence ratios (φ>1.3) a large proportion of NOx converts to NH3. Results from experiments and numerical modeling showed that the temperature profile along the burner has significant effects on the NOx and TFN conversion ratios. It was also found that temperatures between 1000 and 1500 K are most desirable for NOx and TFN conversion in the porous burner. Analysis of the chemical paths for the low- and high-equivalence-ratio cases showed that the formation of nitrogen-containing species under very rich conditions (φ>1.3) is due to the increased importance of the HCNO path as compared to the HNO path. The latter is the dominant path at low equivalence ratios (φ?1.3) and leads to the formation of N2. The NO concentration in the initial mixture was found to improve the conversion by up to 20% at low equivalence ratios (φ?1.3) and to have negligible effect at higher equivalence ratios.  相似文献   

12.
In an effort to elucidate the influence of hydrogen addition on soot formation and oxidation, a series of numerical investigations was performed for fuel rich laminar C2H2/air premixed flat flames using a modified CHEMKIN-II PREMIX code with a detailed soot chemistry mechanism. To clarify the influence of hydrogen addition, the hydrogen content (in volume %) in the fuel mixture was gradually increased from 10 to 50%. The hydrogen addition was found to slow the oxidation of C2H2 near the burner surface. The lowered rate of C2H2 oxidation coupled with lower C2H2 concentration near the burner surface impedes the formation of benzene. However, the formation of benzene was enhanced with the hydrogen addition as the height above burner (HAB) was increased. This was due to the increased reverse rate of the H abstraction reaction that prevents the radical formation process. Through the identical mechanism, the hydrogen addition slows further growth of benzene to larger polycyclic aromatic hydrocarbons (PAHs), eventually lowering the rate of particle inception. Numerical results also indicated that reductions in the soot emissions were mainly attributed to a significant reduction in the mass growth of soot particles. The abundance of hydrogen in the flames deactivated the surface site of soot particles covered with C-H bonds, lowering the surface growth rate (which leads to reductions in the mass growth of soot particles).  相似文献   

13.
Direct numerical simulations are conducted for one-dimensional laminar diffusion flames over a large range of pressures (1?P0?200 atm) employing a detailed multicomponent transport model applicable to dense fluids. Reaction kinetics mechanisms including pressure dependencies and prior validations at both low and high pressures were selected and include a detailed 24-step, 12-species hydrogen mechanism (H2/O2 and H2/air), and reduced mechanisms for methane (CH4/air: 11 steps, 15 species) and heptane (C7H16/air: 13 steps, 17 species), all including thermal NOx chemistry. The governing equations are the fully compressible Navier-Stokes equations, coupled with the Peng-Robinson real fluid equation of state. A generalized multicomponent diffusion model derived from nonequilibrium thermodynamics and fluctuation theory is employed and includes both heat and mass transport in the presence of concentration, temperature, and pressure gradients (i.e., Dufour and Soret diffusion). Previously tested high-pressure mixture property models are employed for the viscosity, heat capacity, thermal conductivity, and mass diffusivities. Five models for high-pressure thermal diffusion coefficients related to Soret and Dufour cross-diffusion are first compared with experimental data over a wide range of pressures. Laminar flame simulations are then conducted for each of the four flames over a large range of pressures for all thermal diffusion coefficient models and results are compared with purely Fickian and Fourier diffusion simulations. The results reveal a considerable range in the influence of cross-diffusion predicted by the various models; however, the most plausible models show significant cross-diffusion effects, including reductions in the peak flame temperatures and minor species concentrations for all flames. These effects increase with pressure for both H2 flames and for the C7H16 flames indicating the elevated importance of proper cross-diffusion modeling at large pressures. Cross-diffusion effects, while not negligible, were observed to be less significant in the CH4 flames and to decrease with pressure. Deficiencies in the existing thermal diffusion coefficient models are discussed and future research directions suggested.  相似文献   

14.
The potential of partial ammonia substitution to improve the safety of hydrogen use was evaluated computationally, using counterflow nonpremixed ammonia/hydrogen/air flames at normal temperature and pressure. The ammonia-substituted hydrogen/air flames were considered using a recent kinetic mechanism and a statistical narrow-band radiation model for a wide range of flame strain rates and the extent of ammonia substitution. The effects of ammonia substitution on the extinction limits and structure, including nitrogen oxide (NOx) and nitrous oxide (N2O) emissions, of nonpremixed hydrogen/air flames were investigated. Results show reduction of the high-stretch extinction (i.e., blow-off) limits, the maximum flame temperature and the concentration of light radicals (e.g., H and OH) with ammonia substitution in hydrogen/air flames, supporting the potential of ammonia as a carbon-free, clean additive for improving the safety of hydrogen use in nonpremixed hydrogen/air flames. For high-stretched flames, however, NOx and N2O emissions substantially increase with ammonia substitution even though ammonia substitution reduces flame temperature, implying that chemical effects (rather than thermal effects) of ammonia substitution on flame structure are dominant. Radiation effects on the extinction limits and flame structure are not remarkable particularly for high-stretched flames.  相似文献   

15.
This paper examines rich combustion of methanol, methane, octane and automotive-grade petrol inside inert porous media in an effort to examine the suitability of the concept for hydrogen production. Species concentrations were measured and operating limits were tested of steady rich flames stabilized inside a two-layer alumina foam burner and a two-layer alumina bead burner. Using a conversion efficiency based on lower heating values, up to 56% of the methanol was converted to syngas (H2, CO) inside the alumina foam burner and 66% inside the alumina bead burner. Using the same efficiency definition, 45% percent of the methane and 36% of the octane and petrol was converted to syngas with a significant portion of the energy remaining trapped in CH4, C2H2 and C2H4. For methanol, the highest equivalence ratio observed for stable combustion was 6.1 inside the foam burner and 9.3 inside the bead burner which are higher than the conventional upper flammability limit (UFL) of 4.1. Methane's UFL was increased to 1.9 and, at a minimum, the conventional upper flammability limits of iso-octane and petrol were attained. A wide operating envelope was observed, which allowed for large turndown ratios up to 20:1. The composition of the products of the methanol flames examined here were close to equilibrium for relatively low equivalence ratios, while those of hydrocarbon flames differed significantly from equilibrium for all φ suggesting that finite rate kinetics are important. The high conversion efficiencies, quick startup times, compact size, and the absence of a catalyst make the present burner suitable for consideration as part of a reformer in a fuel cell powered automobile.  相似文献   

16.
Burning hydrogen in gas turbines is a relevant technological solution to decarbonize power production and propulsion systems. However, ensuring low NOx emission and preventing flashback can be challenging with hydrogen. Stabilization regimes and pollutant emissions from partially premixed CH4/H2/air flames above a coaxial Dual Fuel Dual Swirl injector are investigated in a laboratory-scale combustor at atmospheric conditions for increasing hydrogen contents. The injector consists of an external annular swirler providing premixed methane/air and a central channel fed with pure hydrogen. This burner virtually removes the risk of flashback due to the late injection of hydrogen. Flame stabilization regimes, CO and NOx emissions are analyzed for different configurations of the injector and operating points. The effect of swirling the hydrogen stream is investigated together with the influence of the hydrogen injector recess, i.e. its nozzle position with respect to the backplane of the combustion chamber. It is shown that swirling the central hydrogen stream favors aerodynamically stabilized flames resulting in a low thermal stress on the injector and limited NOx emissions. The study also highlights that a small recess of the central hydrogen injector widely extends the operability range of the burner with aerodynamically stabilized flames. With a sufficient inner swirl and a small recess, flames detach from the injector rim when the hydrogen bulk velocity is large enough. In this configuration, it is found that NOx emissions remain low even for operation with pure hydrogen. Moreover, NOx emissions decrease when increasing the thermal power for a fixed equivalence ratio.  相似文献   

17.
Experiments were performed to add hydrogen to liquefied petroleum gas (LPG) and methane (CH4) to compare the emission and impingement heat transfer behaviors of the resultant LPG–H2–air and CH4–H2–air flames. Results show that as the mole fraction of hydrogen in the fuel mixture was increased from 0% to 50% at equivalence ratio of 1 and Reynolds number of 1500 for both flames, there is an increase in the laminar burning speed, flame temperature and NOx emission as well as a decrease in the CO emission. Also, as a result of the hydrogen addition and increased flame temperature, impingement heat transfer is enhanced. Comparison shows a more significant change in the laminar burning speed, temperature and CO/NOx emissions in the CH4 flames, indicating a stronger effect of hydrogen addition on a lighter hydrocarbon fuel. Comparison also shows that the CH4 flame at α = 0% has even better heat transfer than the LPG flame at α = 50%, because the longer CH4 flame configures a wider wall jet layer, which significantly increases the integrated heat transfer rate.  相似文献   

18.
This study presents the idea of heat recovery through recirculating walls to enhance the combustion stability for ultra-low calorific gas in a porous burner. Numerical studies on the combustion of ultra-low calorific gas of CO/H2 with CO2 and N2 in a developed divergent porous burner with annular channel is conducted using two-dimensional axis symmetrical model with detailed kinetics. The heat recovery efficiency is defined as the ratio of heat recovery by the fresh mixture in the annular channel to burner power. It is shown that the heat recovery has significant effect on the minimal inlet gas temperature (MIGT) for stable combustion. It is confirmed that the heat recovery enhances the combustion and the stability limits are enlarged by preheating the fresh mixture, but it also leads to an extra pressure loss across the burner compared to that without heat recovery. Results show that heat recovery efficiency reaches up to 0.18 for all the investigated parameters and it reduces linearly from 0.32 to 0.18 as the mass flow ratio increases from 0.8 to 1.5. The MIGT for the burner with heat recirculating channel is always smaller than that without heat recovery. As a result, the combustion is greatly improved by the heat recovery in the divergent burner. Meanwhile, it is shown that pressure loss is increased significantly when the heat recirculating annular channel is added.  相似文献   

19.
This study presents numerical modeling and simulations of thermal fluid flows in high-volumetric-density metal hydride beds during hydrogen (H2) adsorption and desorption within the lattice Boltzmann method (LBM) framework. A novel LBM is developed for predicting the flow and conjugate heat transfer in a practical lab apparatus involving a combination of solid chamber, free expansion zone, and porous media metal hydride that have not been addressed to date. With a correction term in the collision operator and a new equilibrium distribution function, the present model has a consistent expression of the heat capacity ratio for different fluid regions and derives the correct form of macroscopic energy and generalized momentum equations (including Darcy, Brinkman, and Forchheimer terms). The model is then validated through comparisons of the simulated results with previous experimental data under different initial pressure and temperature conditions for LaNi5–H2 storage systems as well Mg–H2 reactors, achieving excellent agreement. In addition, accounting for conjugate heat transfer and other porous forces in the present LBM yields improved predictions over prior numerical approaches.  相似文献   

20.
Injecting hydrogen into the natural gas network to reduce CO2 emissions in the EU residential sector is considered a critical element of the zero CO2 emissions target for 2050. Burning natural gas and hydrogen mixtures has potential risks, the main one being the flame flashback phenomenon that could occur in home appliances using premixed laminar burners. In the present study, two-dimensional transient computations of laminar CH4 + air and CH4 + H2 + air flames are performed with the open-source CFD code OpenFOAM. A finite rate chemistry based solver is used to compute reaction rates and the laminar reacting flow. Starting from a flame stabilized at the rim of a cylindrical tube burner, the inlet bulk velocity of the premixture is gradually reduced to observe flashback. The results of the present work concern the effects of wall temperature and hydrogen addition on the flashback propensity of laminar premixed methane-hydrogen-air flames. Complete sequences of flame dynamics with gradual increases of premixture velocity are investigated. At the flame flashback velocities, strong oscillations at the flame leading edge emerge, causing broken flame symmetry and finally flame flashback. The numerical results reveal that flashback tendency increase with increasing wall temperature and hydrogen addition rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号