首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rare earth elements are believed to catalyze the reversible reaction between magnesium and hydrogen and reduce the thermal stability of MgH2 by weakening the Mg–H bond. This study focuses on investigating the effect of Ce partial substitution of La on the comprehensive hydrogen storage performances of La10-xCexMg80Ni10 (x = 0–4) alloys (prepared by vacuum induction melting). The phase composition and microstructure were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and high-resolution transmission electron microscopy (HRTEM). The thermodynamics and kinetics of isothermal reactions were measured by the automatic Sievert apparatus. Non-isothermal dehydrogenation performance of the alloys was researched by thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). All the experimental alloys have a large capacity of hydrogen absorption and desorption and the kinetics of the Ce containing alloys is better. The additive Ce exists in the solid solution of alloy and results in the refinement of grain, making the stability of the hydride visibly lower, which is the reason for the decline in the initial dehydrogenation temperature and enthalpy (ΔH) of the hydride. Besides, the dehydrogenation activation energy of the alloys is distinctly reduced by composition adjustment, which indicates the improved hydrogen storage performances.  相似文献   

2.
In this experiment, the Mg-based hydrogen storage alloys SmMg11Ni and SmMg11Ni + 5 wt.% MoS2 (named SmMg11Ni-5MoS2) were prepared by mechanical milling. By comparing the structures and hydrogen storage properties of the two alloys, it could be found that the addition of MoS2 has brought on a slight change in hydrogen storage thermodynamics, an obvious decrease in hydrogen absorption capacity, an obvious catalytic action on hydrogen desorption reaction, and a lowered onset desorption temperature from 557 to 545 K. Additionally, the addition of MoS2 could dramatically improve the alloy in its hydrogen absorption and desorption kinetics. To be specific, the hydrogen desorption times of 3 wt.% H2 at 593, 613, 633 and 653 K were measured to be 1488, 683, 390 and 192 s respectively for the SmMg11Ni alloy, which were reduced to 938, 586, 296 and 140 s for the MoS2 catalyzed SmMg11Ni alloy at identical conditions. The activation energies of the alloys with and without MoS2 for hydrogen desorption are 87.89 and 100.31 kJ/mol, respectively. The 12.42 kJ/mol decrease is responsible for the ameliorated hydrogen desorption kinetics by adding catalyst MoS2.  相似文献   

3.
Element substitution is an effective strategy for improving Mg-based alloys in their hydrogenation/dehydrogenation property. Thereby, in this paper, Sm was selected to partially replace La in a La–Mg-based alloy for improving its hydriding and dehydriding performance. The alloys with the compositions of Mg80Ni10La10-xSmx (x = 0–4) were manufactured through vacuum induction melting. Their microstructures and phase compositions were measured by XRD, SEM and HRTEM. The isothermal hydrogen storage property was tested through an automatic Sieverts apparatus. Non-isothermal hydrogen desorption performance was measured through TGA and DSC. Arrhenius and Kissinger methods were adopted to calculate the dehydrogenation activation energy of alloys. The results reveal that all of the experimental alloys can reversibly absorb and release a large amount of H2 at appropriate temperatures. The substitution of Sm for La ameliorates the hydriding and dehydriding kinetics, but it results in an undesired reduction of hydrogen absorption and desorption capacities. Substituting La by Sm decreases the initial hydrogen release temperature of the hydride visibly. Furthermore, substituting Sm for La engenders the dehydrogenation activation energy decline clearly, which is considered as the main reason for the improved hydrogen desorption kinetics resulted from Sm replacing La.  相似文献   

4.
The effects of the type and amount of transition metal catalyst on the microstructure and hydrogen storage performance of La5Mg85Ni10 + x wt.% M (x = 1, 3, 5, 7; M = TiF3, NbF5, Cr2O3) alloys milled for 10 h have been investigated. The evolution of microstructure and phase of catalyzed alloys in the absorption/desorption process have been characterized by XRD and HRTEM. The results show that the hydrogen storage capacity of the alloy decreases as the catalyst increases. On the one hand, the catalytic effects of different amount of catalyst TiF3 were studied. TiF3 exists in form of MgF2 and TiH2 phases and Ea decreases firstly and then increases as the amount of TiF3 increases. When 5 wt.% TiF3 is added, the hydrogen desorption activation energy shows the lowest Ea = 45.2 kJ/mol. On the other hand, the catalytic effects of TiF3, Cr2O3 and NbF5 are compared in detail. It was found that TiF3 has better catalytic effect than Cr2O3 and NbF5 due to TiF3 nanoparticles can refine the grains better, provide hydrogen diffusion channels and reduce the nucleation driving force of the alloys.  相似文献   

5.
In this paper, the nanocrystalline and amorphous PrMg11Ni + x wt.% Ni (x = 100, 200) alloys were synthesized by mechanical milling. The gaseous and electrochemical hydrogen storage performances were studied in detail. The results reveal that increasing Ni content facilitates the glass forming of the alloys, and it significantly improves the gaseous and electrochemical hydrogen storage kinetics performance. Furthermore, milling time varying significantly affects the hydrogen storage properties of the alloys. The hydrogen capacity of the alloys first increases and then decreases with milling time prolonged. The hydriding rate and high-rate discharge ability (HRD) of the as-milled alloys have maximum values with milling time varying. But dehydriding rate always increases with milling time prolonged. The improved gaseous hydrogen storage kinetics of alloys are convinced to be ascribed to a reduction in hydrogen desorption activation energy caused by increasing Ni content and prolonging milling time.  相似文献   

6.
In this work, the Mg90Y1.5Ce1.5Ni7 sample is successfully prepared by combining the vacuum induction melting and the mechanical milling. The phase composition and microstructure characteristics are studied by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy measurements. The hydrogenated sample is composed of MgH2, Mg2NiH4, CeH2.73 phases, whereas only the MgH2 and Mg2NiH4 phases are decomposed during dehydrogenation. The hydrogen storage properties of Mg90Y1.5Ce1.5Ni7 samples are measured by semi-automatic Sievert type apparatus. It is found that the samples could be fully activated within three cycles of absorption and dehydrogenation, with a reversible hydrogen storage capacity of about 5.6 wt%. Also, the “optimal hydrogenation temperature” is reduced to 200 °C, and the dehydrogenation activation energy is calculated to be 68.2 kJ/mol and 65.8 kJ/mol by using the Arrhenius and Kissinger equations, respectively. This work provides a scientific approach to promote the practical application of Mg-based alloy.  相似文献   

7.
Mg-based hydrogen storage alloys have become a research hotspot in recent years owing to their high hydrogen storage capacity, good reversibility of hydrogen absorption/desorption, low cost, and abundant resources. However, its high thermodynamic stability and slow kinetics limit its application, so the modification of Mg-based hydrogen storage alloys has become the development direction of Mg-based alloys. Transition metals can be used as catalysts for the dehydrogenation of hydrogen storage alloys due to their excellent structural, electrical, and magnetic properties. Graphene, because of its unique sp2 hybrid structure, excellent chemical stability, and a specific surface area of up to 2600 m2/g, can be used as a support for transition metal catalysts. In this paper, the internal mechanism of graphene as a catalyst for the catalysis of Mg-based hydrogen storage alloys was analyzed, and the hydrogen storage properties of graphene-catalyzed Mg-based hydrogen storage alloys were reviewed. The effects of graphene-supported different catalysts (transition metal, transition metal oxides, and transition metal compounds) on the hydrogen storage properties of Mg-based hydrogen storage alloys were also reviewed. The results showed that graphene played the roles of catalysis, co-catalysis, and inhibition of grain aggregation and growth in Mg-based hydrogen storage materials.  相似文献   

8.
Hydrogen storage in solids of hydrides is advantageous in comparison to gaseous or liquid storage. Magnesium based materials are being studies for solid-state hydrogen storage due to their advantages of high volumetric and gravimetric hydrogen storage capacity. However, unfavorable thermodynamic and kinetic barriers hinder its practical application. In this work, we presented that kinetics of Mg-based composites were significantly improved during high energy ball milling in presence of various types of carbon, including plasma carbon produced by plasma-reforming of hydrocarbons, activated carbon, and carbon nanotubes. The improvement of the kinetics and de-/re-hydrogenation performance of MgH2 and TiC-catalysed MgH2 by introduction of carbon are strongly dependent on the milling time, amount of carbon and carbon structure. The lowest dehydrogenation temperature was observed at 180 °C by the plasma carbon–modified MgH2/TiC. We found that nanoconfinement of carbon structures stabilised Mg-based nanocomposites and hinders the nanoparticles growth and agglomeration. Plasma carbon was found to show better effects than the other two carbon structures because the plasma carbon contained both few layer graphene sheets that served as an active dispersion matrix and amorphous activated carbons that promoted the spill-over effect of TiC catalysed MgH2. The strategy in enhancing the kinetics and thermodynamics of Mg-based composites is leading to a better design of metal hydride composites for hydrogen storage.  相似文献   

9.
Magnesium nickel alloy (Mg2Ni) which used as the negative electrode material in the nickel-metal hydride (Ni/MH) secondary battery is modified by graphite via mechanical milling. The effects of graphite on the Mg2Ni are systematically investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and a series of electrochemical tests. The results show that the cycle stability of the Mg2Ni alloy is improved with the addition of 10 wt.% graphite and the discharge capacity at the 20th cycle increase from 116.9 mA g?1 to 178.5 mA g?1. The Tafel polarization test indicates better corrosion resistance of the Mg2Ni/graphite composite. Meanwhile, the results of electrochemical tests indicate that both the charge-transfer reaction rate on the surface of the alloy and the hydrogen diffusion rate inside the bulk of alloy are boosted with the introduction of graphite.  相似文献   

10.
A novel embedded Mg-based hydrogen storage nanocomposite was prepared by mechanical milling of hydriding combustion synthesized (HCS) Mg-based hydride and hydrogen permissive/oxygen prohibitive polymer. The Mg-based hydride was mechanically milled with tetrahydrofuran solution of polymethyl methacrylate (PMMA) under argon atmosphere. It is determined by X-ray diffraction (XRD) analysis that the average grain size of all the milled nanocomposites become smaller and the nanocomposites exhibit a good air-stable property. The microstructures of the nanocomposites obtained by Field emission scanning electron microscopy (FESEM) and High-resolution transmission electron microscopy (HRTEM) analyses show that Mg95Ni5 particles embedded by PMMA have a diameter of smaller than 100 nm, approximately. The nanocomposites show the optimal hydriding/dehydriding properties, requiring 60 min to absorb 3.37 wt.% hydrogen at low temperature of 473 K, and desorbing as high as 1.02 wt.% hydrogen within 120 min at the same temperature. The onset dehydriding temperature of the composites is about 373 K, which is 150 K lower than that of HCS products Mg95Ni5.  相似文献   

11.
Element substitution is an efficient method to enhance the activation property of TiFe alloys. In this paper, Zr, Mn and Ni were utilized to replace Fe in the alloy partially, and different content rare earth Sm substitute Ti in the alloy. The alloys with nominal compositions of Ti1.1-xFe0.6Ni0.1Zr0.1Mn0.2Smx (x = 0–0.08) were made through vacuum induction melting. The microstructure, composition and hydrogen storage property of alloys were measured in detail by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy and automatically Sievert apparatus. The results reveal that the as-cast alloys contain TiFe as major phase and Ti2Fe as secondary phase. Sm addition refines the grain of alloys obviously. All alloys have good activation properties and can be completely activated without any heat treatment. The activation performance can be further improved by partially replacing Ti with Sm, and the incubation period of activation can be shortened greatly.  相似文献   

12.
The Mg-based hydrogen storage alloy with multiple platforms is successfully prepared by ball milling Co powder and Mg-RE-Ni precursor alloy, and its hydrogen storage behavior was investigated in detail by XRD, EDS, TEM, PCI, and DSC methods. The ball-milled alloy consists of the main phase Mg, the catalytic phases Mg2Ni, Mg2Co as well as a small amount of Mg12Ce, and convert into the MgH2–CeH2.73-Mg2NiH4–Mg2CoH5 composite after hydrogenation. The composite has three PCI platforms corresponding to the reversible de/hydrogenation reaction of Mg/MgH2, Mg2Ni/Mg2NiH4 and Mg6Co2H11/Mg2CoH5. Among them, the transformation between Mg2Ni and Mg2NiH4 triggers the “spill-over” effect which promote the decomposition of MgH2 phases and enhances the hydrogen desorption kinetics. Meanwhile, the conversion of the Mg6Co2H11 to Mg2CoH5 phase induces the “chain reaction” effect, which leads to preferential nucleation of Mg phase and improves the hydrogen absorption kinetics. Therefore, the Mg-RE-Ni-Co alloy has a double improvement on hydrogen absorption and desorption kinetics. Concretely, the alloy has an optimal hydrogen absorption temperature of 200 °C, at which it can absorb 5.5 wt. % H2 within 40 s. Under the conditions, the capacity of absorption almost reaches the maximum reversible value (about 5.6 wt. %). Besides, the alloy has a dehydrogenation activation energy of 67.9 kJ/mol and can desorb 5.0 wt. % H2 within 60 min at the temperature of 260 °C.  相似文献   

13.
Mg-based materials have been widely researched for hydrogen storage development due to the low price of Mg, abundant resources of Mg element in the earth's crust and the high hydrogen capacity (ca. 7.7 mass% for MgH2). However, the challenges of poor kinetics, unsuitable thermodynamic properties, large volume change during hydrogen sorption cycles have greatly hindered the practical applications. Here in this review, our recent achievements of a new research direction on Mg-based metastable nano alloys with a Body-Centered Cubic (BCC) lattice structure are summarized. Different with other metals/alloys/complex hydrides etc. which involve significant lattice structure and volume change from hydrogen introduction and release, one unique nature of this kind of metastable nano alloys is that the lattice structure does not change obviously with hydrogen absorption and desorption, which brings interesting phenomenon in microstructure properties and hydrogen storage performances (outstanding kinetics at low temperature and super high hydrogen capacity potential). The synthesis results, morphology and microstructure characterization, formation evolution mechanisms, hydrogen storage performances and geometrical effect of these metastable nano alloys are discussed. The nanostructure, fresh surface from ball milling process and fast hydrogen diffusion rate in BCC lattice structure, as well as the unique nature of maintaining original BCC metal lattice during hydrogenation result in outstanding hydrogen storage performances for Mg-based metastable nano alloys. This work may open a new sight to develop new generation hydrogen storage materials.  相似文献   

14.
The hydrogen storage alloy of Ti0.32Cr0.43V0.25 was prepared by arc melting and high energy ball milling. Effects of ball milling were studied for various time periods (30–300 min) at 200 rpm. The hydrogen storage capacity of the alloy decreased with the increase in milling time. The reasons for the drop in the hydrogen storage capacity are twofold: surface contamination of the alloy powder and the microstructural changes. The latter includes the increase in lattice strain, the decrease in crystallite size and the consequent increase in subgrain boundaries. Despite the microstructural changes, the BCC phase of the alloy was maintained and its lattice constant remained nearly the same.  相似文献   

15.
Mg-based materials are thought to be promising candidates for future hydrogen storage applications due to the low cost, abundant resources and large hydrogen storage capacity. However, they suffer from the challenges of sluggish kinetics and large volume change after hydriding/dehydriding (H/D) process. In order to address the problems, we successfully synthesized the Mg-based Body-Centered Cubic (BCC) metastable nano alloys with much improved kinetics while almost no obvious structure change after H/D process. In this work, the obtained Mg55Co45 metastable alloy with BCC structure can reach a hydrogen storage capacity of 3.24 wt% (hydrogen per metal or H/M = 1.28, H/Mg = 2.33) at −15 °C and this absorption temperature in Mg-based BCC structure is the lowest temperature reported for Mg-based materials to absorb hydrogen. Importantly, the BCC structure is maintained without obvious metal lattice change after H/D process. Nevertheless, the potential uptake of about 20 wt% theoretical hydrogen capacity (H/M = 9) for this unique BCC structure cannot be reached up to now. Herein, we discuss the mechanism from the geometrical effect aspect to figure out the difference between the experimental hydrogen storage capacity (H/M = 1.28) and the theoretical one (H/M = 9).  相似文献   

16.
Activation difficulty is the key problem limiting the application of TiFe-based hydrogen storage alloys. The addition of transition group elements helps to improve the activation properties of TiFe-based hydrogen storage alloy. In our previous work, the Ti1.08Y0.02Fe0.8Mn0.2 alloy exhibits extremely high hydrogen storage capacity (1.84 wt%) at room temperature with excellent kinetic properties, but it still needs an incubation period of about 1500s. In this study, the composition of Ti1.08Y0.02Fe0.8Mn0.2Zrx (x = 0, 0.02, 0.04, 0.06, 0.08) alloys was prepared by electromagnetic induction melting. The quantitative analysis of elements by energy dispersive spectrometer shows that in the second phase region containing Zr, the content of Ti element is significantly higher than that of Fe. Meanwhile, the first-principle calculation on Zr-doped TiFe system indicates that Zr is more attractive to substitute Ti than Fe. Therefore, the doping of Zr partially replaces the Ti. The solubility of Zr in TiFe is limited, when x ≤ 0.04, the alloy consists of pure TiFe phase. When x > 0.4, the excess Zr forms precipitates, which reduces the reversible hydrogen absorption and desorption capacity of the TiFe alloy. The addition of Zr significantly shortens the activation time and reduces the plateau pressure of TiFe alloys. The Ti1.08Y0.02Fe0.8Mn0.2Zr0.04 alloy can be directly activated without the incubation period and its absolute values of enthalpy change (ΔH) and entropy change (ΔS) are minima (ΔH for 23.2 kJ/mol and ΔS for 83.1 J/mol/K).  相似文献   

17.
Spark plasma sintering (SPS) is a newly developed material preparation technology and is very suitable for the multi-component and/or dissimilar materials preparation. In this paper, Mg–V77.8Zr7.4Ti7.4Ni7.4, Mg–V38Zr25Ti15Ni22 and Mg–ZrMn2 composites were synthesized by SPS method and their hydrogen storage properties were evaluated. The results showed that with the addition of the second alloys, the hydrogen desorption temperature of pure Mg decreased apparently, with the reversible hydrogen storage capacity increased from nearly 0 of pure Mg to near 95% of its total absorption at 573 K. The hydrogen ab/desorption kinetics were also greatly improved, with the hydrogen absorption mechanism changed from surface reaction of pure Mg to three-dimension diffusion of the composite. TEM observation indicated that a thin transition zone of nanocrystalline Mg was produced at the sintering interface during SPS, which may be responsible for the improvement of hydrogen storage properties of these Mg-based composites.  相似文献   

18.
In this study, we investigated the microstructures, hydrogen absorption kinetics, and oxide layers of TiFe and Ti1.2Fe hydrogen storage alloys. Whereas the TiFe alloy has a single phase, the Ti1.2Fe alloy is composed of three phases: TiFe, Ti2Fe, and Ti4Fe. Under no thermal activation process, the TiFe alloy does not absorb hydrogen, though the Ti1.2Fe alloy starts to absorb hydrogen after 4 min of incubation time. From the XPS results, it is revealed that the Ti concentration in the oxide layer on the Ti4Fe phase is higher than that on the TiFe phase, indicating that the Ti concentration in the oxide layer would be important in improving hydrogen absorption kinetics. Based on these results, the hydrogen absorption kinetics could be improved by adjusting composition, enabling the formation of a Ti-rich oxide layer.  相似文献   

19.
Ternary Mg86Y10Ni4 alloy was successfully prepared by vacuum induction melting and subsequent melt-spinning technique. The phase composition and microstructure of the melt-spun and hydrogenated samples were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy measurements. The melt-spun alloy had an amorphous structure, and it transformed into nanocrystalline during the first hydrogenation process. The hydrogenated sample was composed of MgH2, Mg2NiH4, YH2, and a small amount of YH3. The hydrogen absorption/desorption kinetics and thermodynamics were measured by Sievert's apparatus at various temperatures. It was found that the melt-spun Mg86Y10Ni4 alloy could be fully activated after five hydrogenation and dehydrogenation cycles at 380 °C, and it exhibited a reversible gravimetric hydrogen storage capacity of about 5.3 wt%. The enhanced hydrogen sorption kinetics during the first few cycles can be attributed to the increased specific surface caused by the pulverization and cracking of the alloy particles. The activation energy for dehydrogenation reaction was determined to be 67 kJ/mol and 71 kJ/mol by using Arrhenius equation and Kissinger equation respectively. The thermodynamics of the sample was also evaluated by pressure–composition–isotherms, and the results shown that the enthalpy and entropy changes of Mg/MgH2 transformation in the Mg86Y10Ni4 alloy were slightly higher than that of pure Mg/MgH2.  相似文献   

20.
Mg-based hydrogen storage materials can be very promising candidates for stationary energy storage application due to the high energy density and low cost of Mg. Hydrogen storage kinetics and thermal conductivity are two important factors for the material development for this kind of application. Here we studied several types of Mg-based materials with different structure-micrometer scale Mg powders, Mg nanoparticles, single crystal Mg, nanocrystalline Mg50Co50 BCC alloy and Mg thin film samples. It seems the Mg materials with good kinetics usually are the ones with nanostructure and tend to show poor thermal conductivity due to electron/phonon scattering resulting from more interfaces and boundaries in nanomaterials. Based on this work, good crystallinity Mg phase incorporated in carbon nano framework could be one promising option for energy storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号