首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Hydrogen production from the reaction of aluminum powder with liquid water is investigated for nano- and micron-sized spherical aluminum powders over the 20–200 °C temperature range. The maximum hydrogen production rate increases with increasing temperature and decreasing particle size, consistent with a surface reaction controlled by Arrhenius kinetics. The maximum hydrogen production rate normalized by surface area is universal, and an expression is proposed that predicts the maximum rate for variable powder sizes and temperatures. The hydrogen yield increases with increasing temperature and decreasing particle size. Ultrasonic agitation of the mixture increases the hydrogen production rate and total hydrogen yield, and appears to be a promising reaction-enhancing technique. The finite hydrogen yield observed for larger particles and lower temperatures suggests that the reaction is inhibited after it progresses a certain depth into the particles, here termed the penetration thickness. The penetration thickness increases with temperature and is independent of particle size.  相似文献   

2.
The reduction level for a metal oxides carrier determines the final hydrogen yield for a chemical looping hydrogen generation process. Nevertheless, when the oxygen carrier is reduced at a high level, the sintering of materials would be accelerated. In this paper, we prepare a Cu0·2Fe0·8(FeAl)Ox spinel material and investigate its hydrogen production performance. The results indicate that it exhibits a good redox stability even at reduction level of 0.75 during 20 cycles. In contrast, the deactivation of Fe2O3 oxygen carrier can be obviously observed in the first few cycles. This enable the material with stable hydrogen production at a high yield about 7 mmol/g, which is 3.5 times higher than that of Fe2O3. Upon SEM and XRD characterization techniques, we find that the reason of the both good stability and high hydrogen yield is that the ability of spinel support to inhibit sintering of Cu and Fe active compositions.  相似文献   

3.
The development of efficient and non-noble catalyst is of great significance to hydrogen generation techniques. Three surface-oxidized cobalt borides of Co–B–O@CoxB (x = 0.5, 1 and 2) have been synthesized that can functionalize as active catalysts in both alkaline water electrolysis and the hydrolysis of sodium borohydride (NaBH4) solution. It is discovered that oxidation layer and low boron content favor the oxygen evolution reaction (OER) activity of Co–B–O@CoxB in alkaline water electrolysis. And surface-oxidized cobalt boride with low boron content is more active toward hydrolysis of NaBH4 solution. An alkaline electrolyzer fabricated using the optimized electrodes of Co–B–O@CoB2/Ni as cathode and Co–B–O@Co2B/Ni as anode can deliver current density of 10 mA cm−2 at 1.54 V for overall water splitting with satisfactory stability. Meanwhile, Co–B–O@Co2B affords the highest hydrogen generation rate of 3.85 L min−1 g−1 for hydrolysis of NaBH4 at 25 °C.  相似文献   

4.
Magnetic nickel–ruthenium based catalysts on resin beads for hydrogen generation from alkaline NaBH4 solutions were synthesized with combined methods of chemical reduction and electroless deposition. Factors, such as solution temperature, NaBH4 loadings, and NaOH concentration, on performance of these catalysts on hydrogen production from alkaline NaBH4 solutions were investigated. Furthermore, characteristics of these nickel–ruthenium based catalysts were carried out by using various instruments, such as SEM/EDS, XPS, SQUID VSM and BET. These catalysts can be easily recycled from spent NaBH4 solution with permanent magnets owing to their intrinsic soft ferromagnetism and, therefore, reducing the operation cost of the hydrogen generation process. A rate of hydrogen evolution as high as ca. 400 mL min−1 g−1 could be reached at 35 °C in 10 wt% NaBH4 solution containing 5 wt% NaOH using Ni–Ru/50WX8 catalysts. Activation energy of hydrogen generation using such catalysts is estimated at 52.73 kJ mol−1.  相似文献   

5.
The development of highly efficient catalysts using inexpensive and earth-abundant metals is a crucial factor in a large-scale commercialization of direct methanol fuel cells (DMFCs). In this study, we explored a new catalyst based on copper nanodendrites (CuNDs) supported on carbon nanofibers/poly (para-phenylenediamine) (CNF/PpPD) nanocomposite for methanol oxidation reaction (MOR). The catalyst support was prepared on a carbon paste electrode by electropolymerization of para-phenylenediamine monomer on a drop-cast carbon nanofibers network. Afterwards, CuNDs were electrodeposited on the nanocomposite through a potentiostatic method. The morphology and the structure of the prepared nanomaterials were characterized by transmission electron microscope, scanning electron microscope, energy dispersive X-ray, X-ray diffraction, and X-ray photoelectron spectroscope. The results suggested that a three-dimensional nanodendritic structure consisting of Cu2O and Cu(OH)2 formed on the hybrid CNF/PpPD nanocomposite. The catalytic performance of CuNDs supported on CNF, PpPD and CNF/PpPD was evaluated for MOR under alkaline conditions. The CNF/PpPD/CuNDs exhibits a highest activity (50 mA cm?2) and stability toward MOR over 6 h, with respect to CNF/CuNDs (40 mA cm?2) and PpPD/CuNDs (36 mA cm?2). This inexpensive catalyst with high catalytic activity and stability is a promising anode catalyst for alkaline DMFC applications.  相似文献   

6.
The potential of hydrogen production by thermochemical cycle in Algeria using solar radiation as heat sources is estimated under the climate conditions of the country. The study analyzes an integrated copper–chlorine (Cu–Cl) thermochemical cycle with solar parabolic trough system for hydrogen production. In order to determine the most promising solar sites available for deploying the integrated system, the direct normal solar irradiance (DNI) for horizontal tracking system oriented in North-South has been estimated and compared for different locations. Heat gain from parabolic trough collector model is evaluated under Algerian conditions. To describe the different steps of the Cu–Cl cycle for hydrogen production, we perform a thermodynamic analysis accounting for relevant chemical reactions and including the determination of the energy necessary to the cycle. A parametric study is conducted to investigate the effect of heat gain from the parabolic trough collector (PTC) on the hydrogen production rate. Furthermore, the rate production of hydrogen by the Cu–Cl cycle is analyzed and compared for performance improvement of the system for different climatic regions in Algeria. Simulation results reveal great opportunities of hydrogen production using Cu–Cl cycle combined with solar PTC in the south of Algeria with annual hydrogen production exceeds 84 Tons H2/year (around 0,30 kg/m2/day).  相似文献   

7.
Co–Cu–B, as a catalyst toward hydrolysis of sodium borohydride solution, has been prepared through chemical reduction of metal salts, CoCl2·6H2O and CuCl2, by an alkaline solution composed of 7.5wt% NaBH4 and 7.5wt% NaOH. The effects of Co/Cu molar ratio, calcination temperature, NaOH and NaBH4 concentration and reaction temperature on catalytic activity of Co–Cu–B for hydrogen generation from alkaline NaBH4 solution have been studied. X-ray diffraction (XRD), scanning electron microscope (SEM) and Nitrogen adsorption–desorption isotherm have been employed to understand the results. The Co–Cu–B catalyst with a Co/Cu molar ratio of 3:1 and calcinated at 400 °C showed the best catalytic activity at ambient temperature. The activation energy of this catalytic reaction is calculated to be 49.6 kJ mol−1.  相似文献   

8.
The development of hydrazine monohydrate (N2H4·H2O) as a viable hydrogen carrier requires high-performance and cost-effective catalysts for selectively promoting its decomposition to generate hydrogen at mild conditions. Herein, we report the synthesis of a non-precious metal nanocatalyst, in both powdery and monolithic forms, using a simple hydrothermal method followed by annealing treatment under H2 atmosphere. Thus-obtained nanocomposite outperforms the reported non-precious metal catalysts in terms of the overall catalytic properties. More impressively, the system composed of the monolithic Ni10Mo/Ni–Mo–O/Ni foam catalyst, the 85 wt% N2H4·H2O solution and alkali promoter show high hydrogen generation rate, rapid dynamic response and a material-based hydrogen capacity of 6.2 wt%. For the first time, our study demonstrates that the usage of noble-metal-free monolithic catalyst enabled rapid and high-density hydrogen generation from commercial N2H4·H2O solution.  相似文献   

9.
It remains an important project for the development of water splitting electrolyze to design and synthesis of more efficient non-noble metal catalyst. In this work, a structured Ni–MoS2 composite coating has been synthesized under supergravity fields with nickel sulphamate bath containing suspended MoS2 submicro-flakes. X-ray diffraction patterns indicate that the MoS2 submicro-flakes have been successfully incorporated into the Ni matrix. Additionally, SEM shows that the prepared Ni–MoS2 composite coatings display finer grain size than the pure Ni coatings, which can increase the electrochemistry surface area and the active site of hydrogen evolution reaction. Therefore, due to the synergistic effect of molybdenum disulfide and nickel, the Ni–MoS2 composite coatings are directly used as binder-free electrode, which exhibits outstanding electrocatalytic activity for HER in 1.0 M NaOH solution at room temperature. The Ni–MoS2 composite coatings demonstrated an outstanding performance toward the electrocatalytic hydrogen production with low overpotential (100 mA cm?2 at η = 207 mV), a Tafel slope as small as 65 mV dec?1, and stable cycling performance (1200 cycles). The preeminent HER performance of this catalyst suggests that it may hold great promise for practical applications.  相似文献   

10.
In this work, multiwalled carbon nanotubes (MWCNTs) promoted Co–B catalysts for NaBH4 hydrolysis have been designed and synthesized. The structural features of as-prepared catalysts have been investigated and discussed as a function of MWCNTs contents by X-ray diffraction, X-ray photoelectron spectra, N2 adsorption/desorption isotherms, scanning electron microscope. The results show that the catalysts still maintain an amorphous structure with the addition of carbon nanotubes promoter. However, the appropriate amount of MWCNTs promoter in Co–B catalysts leads to large specific surface area, fine dispersion of active components, increased active sites and high electron density at active sites. Moreover, hydrogen spillover on the catalyst is promoted, which contributes to regeneration of active sites and accelerating catalytic cycle. Among all the experimental samples, it is found that the Co–B catalyst promoted by 10 wt% carbon nanotubes exhibits optimal catalytic activity with remarkably high hydrogen generation rate of 12.00 L min−1·gcatalyst−1 and relatively good stability.  相似文献   

11.
Ammonia is regarded as a safe hydrogen energy carrier due to its high hydrogen content and narrow flammable range. Herein, we report a novel metal-organic framework (MOF) templated approach to synthesize highly active catalysts for the hydrogen production from ammonia. Calcination of ruthenium-impregnated UiO-66(Zr)-NH2 leads to formation of small ruthenium nanoparticles (<3 nm) with a strong interaction with the resulting mesoporous zirconia support. These catalysts present a turnover frequency considerably higher than Ru/CNTs catalysts, defying the established believe of 3–5 nm as optimum Ru size for this reaction. Moreover, cesium promoter acts as an electronic modifier of Ru and also as a molecular spacer enhancing the stability under reaction conditions. Despite the exciting potential of this approach, the collapse of MOF framework structures during the calcination process limits the accessibility with an estimated ~16% of the ruthenium accessible, underestimating the actual turnover frequency (TOF) values.  相似文献   

12.
In the present study, nanostructured Co–Ni–P catalysts have been successfully prepared on Cu sheet by electroless plating method. The morphologies of Co–Ni–P catalysts are composed of football-like, granular, mockstrawberry-like and shuttle-like shapes by tuning the depositional pH value. The as-deposited mockstrawberry-like Co–Ni–P catalyst exhibits an enhanced catalytic activity in the hydrolysis of NaBH4 solution. The hydrogen generation rate and activation energy are 2172.4 mL min−1 g−1 and 53.5 kJ mol−1, respectively. It can be inferred that the activity of catalysts is the result of the synergistic effects of the surface roughness, the particle size and microscopic architectures. Furthermore, the stability of mockstrawberry-like Co–Ni–P catalyst has been discussed, and the hydrogen generation rate remains about 81.4% of the initial value after 5 cycles.  相似文献   

13.
14.
Composite photocatalysts have aroused great interest due to combination of favorable electronic and optical properties. Herein, novel CdS/Ti–Ni–O composite photoanodes were constructed through anodic fabrication of nanostructured Ni-doped TiO2 (Ti–Ni–O) oxide films and CdS deposition by successive ionic layer adsorption and reaction (SILAR). The morphology and composition evolution, optical properties and photoelectrochemical (PEC) performance of the photoanodes were investigated. The composite nanofilms mainly consisted of micropores and nanotubes. The CdS/Ti–Ni–O composite photoanode demonstrated remarkable PEC hydrogen generation properties with a high photocurrent density (6.72 mA·cm?2 at 0 V vs Ag/AgCl) which was 18.2 times to that of the bare Ti–Ni–O photoanode. The synergy of Ni-doping and CdS-coupling on the enhancement of PEC performance offers useful ideas to the exploitation of effective photocatalysts and contributes to the development of solar-driven PEC hydrogen generation.  相似文献   

15.
MgH2-based hydrogen storage materials are promising candidates for solid-state hydrogen storage allowing efficient thermal management in energy systems integrating metal hydride hydrogen store with a solid oxide fuel cell (SOFC) providing dissipated heat at temperatures between 400 and 600 °C. Recently, we have shown that graphite-modified composite of TiH2 and MgH2 prepared by high-energy reactive ball milling in hydrogen (HRBM), demonstrates a high reversible gravimetric H storage capacity exceeding 5 wt % H, fast hydrogenation/dehydrogenation kinetics and excellent cycle stability. In present study, 0.9 MgH2 + 0.1 TiH2 +5 wt %C nanocomposite with a maximum hydrogen storage capacity of 6.3 wt% H was prepared by HRBM preceded by a short homogenizing pre-milling in inert gas. 300 g of the composite was loaded into a storage tank accommodating an air-heated stainless steel metal hydride (MH) container equipped with transversal internal (copper) and external (aluminium) fins. Tests of the tank were carried out in a temperature range from 150 °C (H2 absorption) to 370 °C (H2 desorption) and showed its ability to deliver up to 185 NL H2 corresponding to a reversible H storage capacity of the MH material of appr. 5 wt% H. No significant deterioration of the reversible H storage capacity was observed during 20 heating/cooling H2 discharge/charge cycles. It was found that H2 desorption performance can be tailored by selecting appropriate thermal management conditions and an optimal operational regime has been proposed.  相似文献   

16.
Bioethanol steam reforming is one of the most promising route to produce hydrogen from a renewable liquid biofuel. Activity of two Cu–Zn–Al based catalysts was investigated at low temperatures, ranging from 420 to 500 °C, in view of temperature limitations associated with solar energy supply by parabolic trough technology. At 450 °C the space velocity effect was also investigated, by varying the weight hourly space velocity (WHSV) from 1.67 to 3.32 h−1. In each experimental conditions, together with the expected hydrogen and carbon dioxide, also methane, ethylene, acetaldehyde and diethylether were detect as products, so indicating the presence of several parallel reaction pathways. A good selectivity to ethanol reforming was obtained only at 500 °C (with values of the H2/CO2 mol ratio of 3.4 and 4.5) with both catalysts, while at lower temperatures alcohol dehydration into acetaldehyde seemed to be the main reaction.  相似文献   

17.
A novel activated carbon (AC) supported trimetallic Platinum–Ruthenium–Nickel nanoparticles (AC@Pt–Ru–Ni NPs) synthesized as an efficient catalyst for hydrogen production from NaBH4 and enhanced photodegradation ability on methylene blue (MB) dye is reported. AC, which is used as a support material in nanoparticle synthesis, was produced from wood chips. X-ray diffractometry (XRD), atomic force microscope (AFM), Fourier transform infrared spectrophotometer (FTIR), Transmission Electron Microscope (TEM), and UV–visible spectrophotometer (UV–Vis) are used for nanoparticles characterization. According to XRD analysis, the average crystal particle size was measured to be about 3.44 nm. In TEM analysis, the average particle size was determined as 2.44 nm. The photocatalytic activity of AC@Pt–Ru–Ni NPs was examined against MB azo dye and found to have 97% photocatalytic degradation at 300 min against MB. The catalyst activity of AC@Pt–Ru–Ni NPs in hydrogen production was determined by the methanolysis reaction from NaBH4. The Turnover of Frequency (TOF), Activation energy (Ea), enthalpy (ΔH), and entropy values (ΔS) values of the hydrogen production reaction were calculated as 1154.04 h−1, 24.29 kJ/mol, 26.83 kJ/mol, −198.76 J/mol.K, respectively. The study successfully achieved the recycling of wood waste, production of hydrogen, and photodegradation against MB dye. In this study, wood wastes were evaluated and it was aimed to be used in AC production and nanocatalyst synthesis. The efficiency of the synthesized AC@PtRuNi nanocatalyst in hydrogen production and its usability for cleaning dyes from wastewater was determined. The obtained results show that AC@PtRuNi nanocatalyst has potential usability both in hydrogen production and in applications for cleaning dyes from wastewater.  相似文献   

18.
Cobalt–phosphorus (Co–P) catalysts, which were electroless deposited on Cu sheet, have been investigated for hydrogen generation from alkaline NaBH4 solution. The microstructures of the as-prepared Co–P catalysts and their catalytic activities for hydrolysis of NaBH4 are analyzed in relation to pH value, NaH2PO2 concentration, and the deposition time. Experimental results show that the Co–P catalyst formed in the bath solution with pH value of 12.5, NaH2PO2 concentration of 0.8 M, and the deposition time no more than 6 min presents the highest hydrogen generation rate of 1846 mL min−1 g−1. Furthermore, the as-prepared catalyst also shows good cycling capability and the corresponding activation energy is calculated to be 48.1 kJ mol−1. The favorable catalytic performance of the electroless-deposited Co–P catalysts indicates their potential application for quick hydrogen generation from hydrolysis of NaBH4 solution.  相似文献   

19.
This paper presents hydrogen generation measurements from the hydrolysis of NaBH4 aqueous solutions catalyzed by Co doping on single, bimetallic and trimetallic oxide supports (Co/CuO, Co/NiO, Co/Al2O3, Co/NiO–Al2O3, Co/CuO–Al2O3, and Co/CuO–NiO–Al2O3). Support materials are synthesized by the co-precipitation method. Then, Co is doped into support materials by the impregnation method. It is found that Co/CuO–NiO–Al2O3 catalyst exhibited high reaction activity with a maximum hydrogen generation rate (HGR) of 2067.2 ml min?1 gcat?1 at 25 °C. The effect of temperature of the solution, Co amount, and recyclability of the catalyst on hydrogen generation with Co/CuO–NiO–Al2O3 catalyst is investigated in detail. In addition, the highest HGR for Co/CuO–NiO–Al2O3 catalyst is obtained at 55 °C as 6460.0 ml min?1 gcat?1. The activation energy is calculated to be 31.59 kJ mol?1 using Co/CuO–NiO–Al2O3 catalyst. Co/CuO–NiO–Al2O3 catalyst exhibits zero-order reaction kinetics concerning NaBH4 concentration. In addition, the Co/CuO–NiO–Al2O3 catalyst provided high reusability after 5 cycles.  相似文献   

20.
The effects of different components in Cu1Zr1Ce9Oδ catalyst and the variations of the feed stream on the catalytic performance of selective CO oxidation were investigated by diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) technique. It is found that the active sites of Cu1Zr1Ce9Oδ catalyst are mainly Cu+ species. Formate species is formed through the reaction between CO gas and hydroxyl groups on the reduced cerium surface. CeO2 in the Cu1Zr1Ce9Oδ catalyst facilitates the formation of Cu+ species and improves the amount of CO adsorption whereas it is unfavorable to the deep reduction of Cu+ species. ZrO2 doped into the Cu1Zr1Ce9Oδ catalyst increases the Cu coverage and CO adsorption capacity, while it decreases the adsorption of CO2 on the catalyst surface. The adsorption capacities of oxygen and CO are associated with the catalytic performance for the selective CO oxidation at lower and higher temperatures, respectively. The presence of CO in the feed stream promotes the reduction of Ce4+ species and the production of geminal OH group on the reduced ceria surface. Hydrogen in the feed diminishes the CO adsorption ability but stimulates the CO desorption. CO2 in the feed occupies the active sites and decreases the adsorption of the reactants, thus deteriorates the catalytic performance for the selective CO oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号