首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Pt and Pt–Ru shells on Cu cores supported on Vulcan carbon XC72R have been synthesized and tested as possible anode electrocatalysts for polymer electrolyte fuel cells. Pt(Cu)/C was prepared by Cu electrodeposition on the black carbon support at constant potential followed by Pt deposition on Cu by galvanic exchange, whereas Pt–Ru(Cu)/C was prepared by spontaneous deposition of Ru species on Pt(Cu)/C. The corresponding cyclic voltammograms in 0.5 M H2SO4 solution showed the hydrogen adsorption/desorption peaks and no Cu oxidation. The respective CO stripping peak potentials of Pt(Cu)/C and Pt–Ru(Cu)/C were about 0.1 and 0.2 V more negative than those corresponding to Pt/C and Ru-decorated Pt/C. The best conditions for CO oxidation were found for Cu deposition potentials between −0.2 and −0.4 V vs. Ag/AgCl/KCl(sat). The Pt economy of the Pt–Ru(Cu)/C system was proved for the methanol oxidation, with specific currents more than twice those obtained on the Ru-decorated commercial Pt/C catalysts.  相似文献   

2.
Catalyst improvement for the preferential oxidation of CO (CO-PROX) is essential in developing efficient fuel cell technologies. Here, we investigate the promotion of the Cu/CeO2 system with Pt, prepared by impregnation and alcohol-reduction methods, in the CO-PROX reaction under ideal and realistic feed compositions. The high Pt dispersion in PtCu/CeO2 prepared by impregnation led to a CO conversion of 62% and CO2 selectivity of 83% at 50 °C under a feed stream composed of H2/CO/O2, while monometallic Cu/CeO2 and Pt/CeO2 showed negligible activity at these conditions. By adding CO2–H2O to the feed stream, PtCu/CeO2 catalysts prepared by both methods presented similar activity. The maximum CO conversion temperature was shifted to 100 °C. Under these conditions, Cu/CeO2 was inactive, and Pt/CeO2 showed identical conversion but lower CO2 selectivity. In-situ XANES revealed that fast oxidation of Cu species at low temperatures is responsible for Cu/CeO2 deactivation, while preferential adsorption of CO on Pt0 sites in PtCu/CeO2 avoided deactivation. The use of deactivation-resistant Pt sites as complimentary sites for CO activation associated with improved oxygen mobility over Cu–CeO2 surface proved to be an effective strategy for CO-PROX under H2O/CO2 feed stream at low temperatures.  相似文献   

3.
Graphene nanoribbons (GNRs) were first used as a novel support material for Pt nanoparticles (NPs) based catalyst for methanol electro-oxidation. Upon oxidation and cutting of multiwall carbon nanotubes (MWCNTs), highly dispersive graphene oxide nanoribbons (GONRs) were obtained, on which metal ions such as PtCl62− can be homogenously deposited. The hybrid catalyst of GNRs supported Pt NPs (Pt/GNR) was further prepared through facile in-situ chemical co-reduction, with a homogeneous distribution of Pt NPs (2–3 nm) on the nanoribbons. Compared to Pt/MWCNT and commercial Pt/XC72R catalysts, Pt/GNR hybrids show much larger electrochemically active surface area, higher electrochemical stability, and better CO tolerance towards electro-oxidation of methanol. Therefore, GNR is a promising alternative two-dimensional support material for electrocatalysts in direct methanol fuel cells.  相似文献   

4.
The present work is focused on the synthesis of new catalysts of platinum supported on carbon nanofibers and their use in PEMFC electrodes. Carbon nanofibers (CNF) and functionalized carbon nanofibers (CNF-f), synthesized via the thermocatalytic decomposition of CH4, were characterized, in the presence and the absence of deposited Pt, by porosimetric, SEM, TPD, and HRTEM analyses, and compared to commercial Vulcan® XC72R carbon black (CB). CNF and CNF-f show similar BET surface areas, but smaller than that of CB, which have a large quantity of micropores. On the contrary, the microporosity in CNF and CNF-f was negligible, and the mesopores were the dominant pore structure.A single cell characterization of three catalysts Pt/CNF, Pt/CNF-f and Pt/CB was carried out, measuring the relevant kinetic parameters. The power density given by the Pt/CNF catalyst in the cathode catalyst layer was 1.5 times higher than that given by the Pt/CB catalyst at 0.600 V. It is shown when using functionalized carbon nanofibers in the anode catalyst layer, that functionalization by chemically modifying the surface of the nanofibers significantly affects the PEMFC performance.  相似文献   

5.
Carbon supported Pt–Cu catalyst (PtCu/C) with surface enriched Pt was synthesized by annealing the Pt-deposited Cu particles. X-ray diffraction (XRD) results indicate the formation of disordered Pt–Cu alloy phase with a high level of Cu/Pt atomic ratio. X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma (ICP) analysis confirm the surface enrichment of Pt. Electrochemical measurements show that PtCu/C has 3.7 times higher Pt mass activity toward the oxygen reduction reaction (ORR) than commercial Pt/C. The enhanced ORR activity of PtCu/C is attributed to the modified electronic properties of surface Pt atoms, which reduces the surface blocking of the ORR oxygenated species.  相似文献   

6.
To achieve the practical application of direct methanol fuel cells, it is highly important to develop effective electrocatalyst with high activity and favorable durability. Herein, we report the successful preparation of PtCu bimetallic nanoparticles supported on ceria/multi-walled carbon nanotubes composite (PtCu–CeO2/MWCNTs) via microwave-assisted polyol reduction procedure. The composition and morphology of as-obtained composite catalysts were characterized by X-ray diffraction, Raman, X-ray photoelectron spectra, scanning electron microscopy and transmission electron microscopy. The synergistic effects combining PtCu bimetallic effect and oxygen vacancy effect in ceria of such composite catalysts provide abundant active surface area and enhanced conductivity for the effective charge transport during the methanol oxidation reaction (MOR) process. As a results, the PtCu–CeO2/MWCNTs with optimized Pt proportion achieve greatly enhanced MOR activity with mass activity of 1.28 A mg−1Pt and specific activity of 2.03 mA cm−2, superior CO tolerance and reliable stability in contrast to that of commercial Pt/C catalysts.  相似文献   

7.
Pt-based electrocatalysts were prepared on different carbon supports which are multiwall carbon nanotubes (MWCNTs), Vulcan XC 72R (VXR) and black pearl 2000 (BP2000) using a supercritical carbon dioxide (scCO2) deposition technique. These catalysts were characterized by using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and cyclic voltammetry (CV). XRD and HRTEM results demonstrated that the scCO2 deposition technique enables a high surface area metal phase to be deposited, with the size of the Pt particles ranging from 1 to 2 nm. The electrochemical surface areas (ESAs) of the prepared electrocatalysts were compared to the surface areas of commercial ETEK Pt/C (10 wt% Pt) and Tanaka Pt/C (46.5 wt% Pt) catalysts. The CV data indicate that the ESAs of the prepared Pt/VXR and Pt/MWCNT catalysts are about three times larger than that of the commercial ETEK catalyst for similar (10 wt% Pt) loadings. Oxygen reduction activity was investigated by hydrodynamic voltammetry. From the slope of Koutecky–Levich plots, the average number of electrons transferred in the oxygen reduction reaction (ORR) was 3.5, 3.6 and 3.7 for Pt/BP2000, Pt/VXR and Pt/MWCNT, correspondingly, which indicated almost complete reduction of oxygen to water.  相似文献   

8.
In this work, bimetallic PtX (X = Sn, Cu) decorated graphene nanohybrids (PtX/G) were developed, which showed enhanced photocatalytic hydrogen evolution performance than that of Pt/G in Eosin Y sensitized H2 production system. The presence of Sn or Cu in PtX/G nanohybrids can remarkably improve the photogenerated charge separation efficiency and contribute to promoting the reduction of protons to molecular hydrogen in comparison to with noble metal Pt. Meanwhile, graphene acted as a more suitable electronic support to accelerate the migration of electrons from sensitizer to catalysts, owing to its higher electron mobility and larger surface area than other supports (such as carbon sphere, Al2O3 and SiO2). The optimal H2 evolution rate PtSn/G and PtCu/G was about 2.2 and 2.0 times higher than that of Pt/G. The apparent quantum efficiency (AQE) of PtSn/G and PtCu/G reached up to 12.46% and 11.06% under visible light irradiation (λ ≥ 420 nm), respectively.  相似文献   

9.
Developing active and durable electrocatalysts for oxygen reduction reaction (ORR) is of great significance in proton exchange membrane fuel cells (PEMFCs). Herein, we develop a facile strategy to synthesize PtCu nanoparticles with enhanced ORR performance through morphology tuning and transition-metal doping. Two distinct PtCu nanoparticles, namely nanooctahedrons (NOs) and nanospheres (NSs), are selectively synthesized in presence or absence of W(CO)6 via a facile one-pot method. Furthermore, by introducing a small amount of third transition metal, M-doped (M = Sc, Y, La, Gd, Fe) PtCu NOs are obtained. Electrocatalytic results suggest that the ORR performance of PtCu NOs is better than that of PtCu NSs due to the morphology advantages. And the ORR performance of PtCuM NOs is further promoted since the doping effect of transition metals compared to that of PtCu NOs. Particularly, PtCuSc NOs exhibit remarkable mass activity (1.652 mA μg−1Pt) and specific activity (2.093 mA cm−2), which are 9.9 and 7.2 times higher than that of commercial Pt/C catalysts at 0.8 V (vs. RHE). Moreover, after accelerated stability tests, the loss of mass activity for PtCuSc NOs is only 9.2%, which is much lower than that of PtCu NOs (16.5%) and commercial Pt/C (44.3%). This work provides a feasible idea to boost the ORR performances of Pt-based nanoparticles.  相似文献   

10.
Four carbon supported PtCu nanostructured catalysts with Pt:Cu atomic ratios of 1:3.20, 1:2.23, 1:0.61 and 1:0.35 were synthesized by a two-step route, involving the chemical reduction of Cu ions on the carbon support, followed by the partial galvanic replacement of Cu atoms by Pt. Bimetallic nanostructured particles with average sizes in the range of 2.3–3.2 nm were obtained. The bimetallic catalysts with surface Pt contents between 20 and 55 at. % were formed by a Cu-rich core surrounded by a Pt-Cu shell, while that with the highest Pt content presented a uniform alloy structure instead of a core-shell arrangement. The electrocatalytic performance of the as-prepared materials toward ethanol electrooxidation in acid and alkaline media and glycerol oxidation in alkaline environment was investigated by cyclic voltammetry and chronoamperometry. It was observed that the electrocatalytic activity of PtCu nanoparticles was found to depend on the surface composition, platinum utilization efficiency, structure and Pt ensemble. Among the as-prepared catalysts, Pt0·62Cu0·38/C core-shell material showed the best performance for ethanol oxidation in both acid and alkaline environments, while Pt0·24Cu0·76/C and Pt0·31Cu0·69/C core-shell catalysts exhibited the highest activity for glycerol oxidation in alkaline medium. The electrochemical results showed that the catalytic activity of the bimetallic Cu@PtCu core-shell nanostructured nanoparticles is between four and ten times higher than that of a commercial Pt0·51Ru0·49/C catalyst.  相似文献   

11.
Polypropylene (PP) nanocomposites with multi-walled carbon nanotubes (MWCNT) alone or combined with carbon nanofibers (CNF) at different loadings have been fabricated by melt mixing with a focus on their mechanical properties and corrosion resistance for bipolar plates applications in proton exchange membrane fuel cells (PEMFCs). The incorporation of up to 20 wt% MWCNT in the PP matrix produces enhancements of 71, 47, 56, and 30% in microhardness, elastic modulus, and tensile and flexural strength, respectively. Combined additions of MWCNT and CNF allow producing hybrid nanocomposites with increased strength than when neat MWCNT as reinforcement, preserving their processability even at a total filler content of up to 30 wt%. The measured values of icorr in both PP/MWCNT and PP/MWCNT/CNF suggest a slow degradation rate in the PEMFC environment. Based on the US Department of Energy (DOE) targets, PP/20MWCNT, PP/21.5MWCNT, and PP/15MWCNT/15CNF nanocomposites are good candidates to produce bipolar plates for PEMFCs.  相似文献   

12.
The development of electrocatalysts with high activity and durability for oxygen reduction reaction (ORR) in acidic electrolyte environments remains a serious challenge for clean and efficient energy conversion. Synergistic effects between Pt and inexpensive metals, the d band center of Pt and catalyst morphology could adjust the adsorption and desorption of oxygen intermediates by the Pt. All the factors affect the catalytic performance of Pt-based nanocrystals. Here, we prepared Cu@PtCu3 NWs with an average diameter of 74.9 nm for Cu and about 10 nm PtCu3 layer. After etching, the Cu@PtCu3 nanowires is transformed into PtCu nanotube structure, due to the removal of copper from the surface and interior. PtCu NTs for ORR shows excellent activities and durability due to the integration of structural advantages and synergistic effects. Notably, the mass activity and specific activity of PtCu NTs (0.105 A mg?1Pt and 0.230 mA cm?2Pt) are 2.0 and 3.8 times higher than that of commercial Pt/C (0.053 A mg?1Pt and 0.06 mA cm?2Pt). The etching process to change the morphology of the catalyst and alter the electronic structure of the catalyst is expected to be useful for the design of future structured Pt-based alloy nanocatalysts.  相似文献   

13.
Various metal nanoparticle catalysts supported on Vulcan XC-72 and carbon-nanomaterial-based catalysts were fabricated and compared and assessed as substitutes of platinum in microbial electrolysis cells (MECs). The metal-nanoparticle-loaded cathodes exhibited relatively better hydrogen production and electrochemical properties than cathodes coated with carbon nanoparticles (CNPs) and carbon nanotubes (CNTs) did. Catalysts containing Pt (alone or mixed with other metals) most effectively produced hydrogen in terms of overall conversion efficiency, followed by Ni alone or combined with other metals in the order: Pt/C (80.6%) > PtNi/C (76.8%) > PtCu/C (72.6%) > Ni/C (73.0%) > Cu/C (65.8%) > CNPs (47.0%) > CNTs (38.9%) > plain carbon felt (38.7%). Further, in terms of long-term catalytic stability, Ni-based catalysts degraded to a lesser extent over time than did the Cu/C catalyst (which showed the maximum degradation). Overall, the hydrogen generation efficiency, catalyst stability, and current density of the Ni-based catalysts were almost comparable to those of Pt catalysts. Thus, Ni is an effective and inexpensive alternative to Pt catalysts for hydrogen production by MECs.  相似文献   

14.
To accelerate the commercialization of fuel cells, many efforts have been made to develope highly active and durable Pt-based catalyst for oxygen reduction reaction (ORR). Herein, PtCu porous nanowires (PNWs) with controllable composition are synthesized through an ultrasound-assisted galvanic replacement reaction. The porous structure, surface strain, and electronic property of PtCu PNWs are optimized by tuning composition, which can improve activity for ORR. Electrochemical tests reveal that the mass activity of Pt0.5Cu0.5 PNWs (Pt/Cu atomic ratio of 1:1) reaches 0.80 A mgPt?1, which is about 5 times higher than that of the commercial Pt/C catalyst. Notably, the improved activity of the porous nanowire catalyst is also confirmed in the single-cell test. In addition, the large contact area with the carrier and internal interconnection structure of Pt0.5Cu0.5 PNWs enables them to exhibit much better durability than the commercial Pt/C catalyst and Pt0.5Cu0.5 nanotubes in accelerated durability test.  相似文献   

15.
Pt bimetallic catalysts were prepared by impregnating a commercial Pt/C with various transition metals (Pt/M = 3, M: V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Ag and W) and sintering at 900 °C. All the freshly prepared catalysts show, except PtW, enrichment of the base metal on the PtM particle surface, and the degree of enrichment can be correlated with the surface energy of the base metal. Upon potential excursion in sulfuric acid solution, about 10-30% increases in the Pt surface area were observed when the scan limit was increased from 1.0 V to 1.5 V, except PtFe, PtCr and PtAg which showed 70%, 80%, and 270% increase, respectively, due to the surface roughening that was caused by leaching of the base metal.Oxygen reduction tests using a half cell in phosphoric acid solution at 190 °C show monotonic decreases of electrode activity as time elapses for pure Pt, PtW, PtCu, PtZr and PtMn, whereas the rest show an initial increase that is followed by monotonic decrease over time. More pertinent increase at the initial stage was observed for PtCr, PtFe and PtAg catalysts due to the surface roughening effect. Among many parameters tested, a good correlation was found between the mass activity (A/g Pt) and the Pt surface area (SCV) obtained from the coulombic charge of the strongly adsorbed hydrogen. The specific activity (μA/cm2 Pt) based on SCV (m2/g Pt) was within the range of 2.12 ± 0.14 for all the tested PtM bimetallic catalysts.  相似文献   

16.
The present article investigates the tolerant effect exerted by a functionalised multi-walled carbon nanotube (MWCNT) support compared with the Vulcan XC-72 support for a nanoparticulate Pt catalyst. The negative effect produced in the hydrogen oxidation reaction (HOR) by the presence of a Pt contaminated with high CO coverage was analysed. This investigation was conducted using a rotating disk electrode (RDE) and a single cell with membrane electrode assemblies (MEAs) with loads of 0.3 mg Pt/cm2 for the anode and 0.6 mg Pt/cm2 for the cathode at various poisoning times. To this end, polarisation curves were performed, and electrochemical impedance spectroscopy (EIS) measurements were analysed. In addition, the recovery of the poisoning/de-poisoning process was studied. The –OH groups anchored to the MWCNT support exert a protective effect on the Pt nanoparticles, making the catalyst more efficient in a PEMFC fed with H2 + CO.  相似文献   

17.
Pt-based hollow nanocrystals have shown an astonishing performance toward oxygen reduction reaction (ORR) because of their open structures, high surface areas and large Pt atom utilization. However, the careful geometric control of hollow nanocrystals is still not easy. Here, a facile template-free method was reported for the synthesis of ultrathin-wall PtCu nanocages with small islands on the surface (U–PtCu NCs). Moreover, the wall thickness of nanocages and the density of islands were well-tuned by controlling the experiment conditions. In the end, the novel hollow structures with abundant defects as well as the synergistic interaction between Pt and Cu elements endowed U–PtCu NCs with enhanced ORR activity. Specifically, its mass activity was 0.36 A mg−1 and its specific activity was 0.71 mA cm−2, which were about 4.2 and 7.1 times higher than that of commercial Pt/C. In addition, the enhanced stability was proved by the accelerated durability test of 10 000 cycles.  相似文献   

18.
In this study, it is aimed to investigate hydrogen (H2) generation from sodium borohydride (NaBH4) hydrolysis by multi-walled carbon nanotube supported platinum catalyst (Pt/MWCNT) under various conditions (0–0.03 g Pt amount catalyst, 2.58–5.03 wt % NaBH4, and 27–67 °C) in detail. For comparison, carbon supported platinum (Pt/C) commercial catalyst was used for H2 generation experiments under the same conditions. The reaction rate of the experiments was described by a power law model which depends on the temperature of the reaction and concentrations of NaBH4. Kinetic studies of both Pt/MWCNT and Pt/C catalysts were done and activation energies, which is the required minimum energy to overcome the energy barrier, were found as 27 kJ/mol and 36 kJ/mol, respectively. Pt/MWCNT catalyst is accelerated the reaction less than Pt/C catalyst while Pt/MWCNT is more efficient than Pt/C catalyst, they are approximately 98% and 95%, respectively. According to the results of experiments and the kinetic study, the reaction system based on NaBH4 in the presence of Pt/MWCNT catalyst can be a potential hydrogen generation system for portable applications of proton exchange membrane fuel cell (PEMFC).  相似文献   

19.
Through a simple and rapid method, carbon papers (CPs) were coated with Au and the resulting Au/CP substrates were used for the preparation of Pt/Au/CP by Cu underpotential deposition (Cu UPD) and redox replacement technique. A series of Ptn/Au/CP catalysts (where n = number of UPD-redox replacement cycles) were synthesized and their electrochemical properties for methanol oxidation reaction (MOR), and oxygen reduction reaction (ORR) were investigated by electrochemical measurements. The Ptn/Au/CP electrodes show higher electrocatalytic activity and enhanced poison tolerance for the MOR as compared to a commercial Pt/C on CP (Pt/C/CP). The highest mass specific activity and Pt utilization efficiency for MOR was observed on Pt1/Au/CP with a thickness close to a monatomic Pt layer. Chronoamperometric tests in methanol solution revealed that Ptn/Au/CPs have much higher CO tolerance compared to Pt/C/CP. Among the Ptn/Au/CPs, CO tolerance decreases with increasing the amount of deposited Pt, indicating that the exposed Au atoms in close proximity to Pt plays a positive role against CO poisoning. Compared with the Pt/C/CP, all the Ptn/Au/CP electrodes show more positive onset potentials and lower overpotentials for ORR. For instance, the onset potential of ORR is 150 mV more positive and the overpotential is ∼140 mV lower on Pt4/Au/CP with respect to Pt/C/CP.  相似文献   

20.
PtSn/C with Pt:Sn atomic ratio of 50:50 and PtSnCu/C electrocatalysts with different Pt:Sn:Cu atomic ratios were prepared using NaBH4 as reducing agent and carbon black Vulcan XC72 as support. In a second step, the electrocatalysts were treated with nitric acid to remove the less noble metals (chemical dealloying). The obtained materials were characterized by X-ray diffraction, EDX analysis, TEM images with EDX scan-line and cyclic voltammetry. The electro-oxidation of ethanol was studied by chronoamperometry and on single direct ethanol fuel cell (DEFC). The X-ray diffractograms of the as-synthesized electrocatalysts showed the typical face-centered cubic (FCC) structure of Pt alloys. After acid treatment the FCC structure was maintained and Sn and Cu atoms were removed from the nanoparticles surface. Chronoamperometry measurements showed a strong increase of performance of PtSn/C and PtSnCu/C electrocatalysts after acid treatment; however, under DEFC conditions at 100 °C, only acid-treated PtSn/C electrocatalyst showed superior performance compared to commercial PtSn/C from BASF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号