首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to solve the problem of large overpotential in water electrolysis for hydrogen production, transition metal sulfides are promising bifunctional electrocatalysts for hydrogen evolution reaction/oxygen evolution reaction that can significantly reduce overpotential. In this work, Ni3S2 and amorphous MoSx nanorods directly grown on Ni foam (Ni3S2-MoSx/NF) were prepared via one-step solvothermal process, which were used as a high-efficient electrocatalyst for overall water splitting. The Ni3S2-MoSx/NF composite exhibits very low overpotentials of 65 and 312 mV to reach 10 mA cm−2 and 50 mA cm−2 in 1.0 M KOH for HER and OER, respectively. Besides, it exhibits a low Tafel slope (81 mV dec−1 for HER, 103 mV dec−1 for OER), high exchange current density (1.51 mA cm−2 for HER, 0.26 mA cm−2 for OER), and remarkable long-term cycle stability. This work provides new perspective for further the development of highly effective non-noble-metal materials in the energy field.  相似文献   

2.
Herein, strongly coupled Ni3S2/MoS2 hollow spheres derived from NiMo-based bimetal-organic frameworks are successfully synthesized for overall water splitting via a one-pot solvothermal method followed by sulfurization. A well-defined hollow spherical structure with a heterointerface between Ni3S2 and MoS2 is constructed using solvothermal and sulfurization processes. Owing to their bimetallic heterostructure, porous hollow carbon structure with large surface area, and numerous exposed active sites, the Ni3S2/MoS2 hollow spheres are found to be efficient electrocatalysts for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The heterostructured Ni3S2/MoS2 hollow spheres show small overpotentials of 303 and 166 mV to reach a current density of 10 mA cm?2 for the OER and HER in 1.0 M KOH, respectively. Furthermore, an overall water-splitting electrolyzer consisting of the Ni3S2/MoS2 hollow spheres as both the anode and cathode requires a very low cell voltage of 1.62 V to drive a current density of 10 mA cm?2 with outstanding long-term stability for 100 h. Our findings offer a new pathway for the design and synthesis of electrochemically advanced bifunctional catalysts for various energy storage and conversion applications.  相似文献   

3.
Recently, the replacement of expensive platinum-based catalytic materials with non-precious metal materials to electrolyze water for hydrogen separation has attracted much attention. In this work, Ni0.85Se, MoS2 and their composite Ni0.85Se/MoS2 with different mole ratios are prepared successfully, as electrocatalysts to catalyze the hydrogen evolution reaction (HER) in water splitting. The result shows that MoS2/Ni0.85Se with a molar ratio of Mo/Ni = 30 (denoted as M30) has the best catalytic performance towards HER, with the lowest overpotential of 118 mV at 10 mA cm−2, smallest Tafel slope of 49 mV·dec−1 among all the synthesized materials. Long-term electrochemical testing shows that M30 has good stability for HER over at least 30 h. These results maybe due to the large electrochemical active surface area and high conductivity. This work shows that transition metal selenides and sulfides can form effective electrocatalyst for HER.  相似文献   

4.
Ni3S2 is an emerging cost-effective catalyst for hydrogen generation. However, a large amount of reported Ni3S2 was synthesized via multi-step approaches and few were fabricated based on the one-step strategies. Herein, we report a facile one-step low-temperature synthesis of Ni3S2 nanowires (NWs). In this strategy, a resin containing sulfur element is recommended as a sulfur resource to form Ni3S2 NWs. It presents a plausible explanation on the vapor–solid–solid (VSS) growth mechanism according to the results of this experiment and reported in literature that has been published. The Ni3S2 NW exhibits a potential ∼199 mV at 10 mA cm−2 and the long-term durability over 30 h at 20 mA cm−2 HER operation, better than other reported Ni3S2. More importantly, according to replace transition metal foam as the initial metal, other transition metal sulfide can be readily synthesized via this original approach.  相似文献   

5.
Searching for efficient, stable and low-cost nonprecious catalysts for oxygen and hydrogen evolution reactions (OER and HER) is highly desired in overall water splitting (OWS). Herein, presented is a nickel foam (NF)-supported MoS2/NiFeS2 heterostructure, as an efficient electrocatalyst for OER, HER and OWS. The MoS2/NiFeS2/NF catalyst achieves a 500 mA cm−2 current density at a small overpotential of 303 mV for OER, and 228 mV for HER. Assembled as an electrolyzer for OWS, such a MoS2/NiFeS2/NF heterostructure catalyst shows a quite low cell voltage (≈1.79 V) at 500 mA cm−2, which is among the best values of current non-noble metal electrocatalysts. Even at the extremely large current density of 1000 mA cm−2, the MoS2/NiFeS2/NF catalyst presents low overpotentials of 314 and 253 mV for OER and HER, respectively. Furthermore, MoS2/NiFeS2/NF shows a ceaseless durability over 25 h with almost no change in the cell voltage. The superior catalytic activity and stability at large current densities (>500 mA cm−2) far exceed the benchmark RuO2 and Pt/C catalysts. This work sheds a new light on the development of highly active and stable nonprecious electrocatalysts for industrial water electrolysis.  相似文献   

6.
The development of highly active and low-cost catalysts for hydrogen evolution reaction (HER) is significant for the development of clean and renewable energy research. Owing to the low H adsorption free energy, molybdenum disulfide (MoS2) is regarded as a promising candidate for HER, but it shows low activity for oxygen evolution reaction (OER). Herein, graphene-supported cobalt-doped ultrathin molybdenum disulfide (Co–MoS2/rGO) was synthesized via a one-pot hydrothermal method. The obtained hybrids modified electrode exhibits a high HER catalytic activity with a low overpotential of 147 mV at the current density of 10 mA cm−2, a small Tafel slope of 49.5 mV dec−1, as well as good electrochemical stability in acidic electrolyte. Meanwhile, the catalyst shows remarkable OER activity with a low overpotential of 347 mV at 10 mA cm−2. The superior activity is ascribed not only to the high conductivity originated from the reduced graphene, but also to the synergistic effect between MoS2 and cobalt.  相似文献   

7.
In targeting the most important energy and environmental issues in current society, the development of low-cost, bifunctional electrocatalysts for urea-assisted electrocatalytic hydrogen (H2) production is an urgent and challenging task. In this work, interlaced rosette-like MoS2/Ni3S2/NiFe-layered double hydroxide/nickel foam (LDH/NF) is successfully synthesized by a two-step hydrothermal reaction. Due to its unique interlaced heterostructure, MoS2/Ni3S2/NiFe-LDH/NF exhibits excellent bifunctional catalytic activity towards the urea oxidation reaction (UOR) and the hydrogen evolution reaction (HER) in 1.0 M KOH with 0.5 M urea. In a concurrent two-electrode electrolyser (MoS2/Ni3S2/NiFe-LDH/NF(+,-)), only voltage of 1.343 V is required to reach 50 mA cm−2, which is 216 mV lower than for pure water splitting. Furthermore, after 16 h of urea electrolysis in 1.0 M KOH with 0.5 M urea, the current density remains at 98% of the original value. Thus, the catalyst is not only favorable for H2 production, but also has great significance for the problem of urea-rich wastewater treatment.  相似文献   

8.
Developing a multifunctional and sustainable electrode material for hydrogen evolution reaction and supercapacitors is a highly feasible avenue for producing the high energy density and renewable energies. In our study, nanostructured NiCo2S4/Ni3S2/NF nanoarrays are rational developed in experiments via a simple hydrothermal reaction. Ascribed to the 3D nanostructured NiCo2S4/Ni3S2 with numerous exposure active sites and large contact areas for the electrolyte, the binder-free feature of NiCo2S4/Ni3S2/NF facilitates a low charge transfer resistance, as well as the synergetic effect of NiCo2S4 and Ni3S2. The obtained electrocatalyst showed ultrahigh electrocatalytic activity with an overpotential of 111 mV at 10 mA cm−2 and a Tafel slope of 57 mV dec−1. In addition, the electrode showed an area specific capacity of 6.13 F cm−2 at 10 mA cm−2 and superior rate capability (2.72 F cm−2 at 80 mA cm−2), accompanied by excellent cycling stability. This results presented in our work can provide an effective strategy for rational design of other hybrid materials with excellent electrochemical performance in the application of electrocatalysis and supercapacitors.  相似文献   

9.
Reasonable design of efficient and stable catalysts with low cost and abundant natural reserves is vital for electrocatalytic water splitting. Herein, novel nanotremella-like Bi2S3/MoS2 composites with different mass ratios between Bi2S3 and MoS2 have been successfully prepared through a hydrothermal approach and further applied to hydrogen evolution reaction (HER) in 1.0 M KOH electrolyte for the first time. When the mass ratio of Bi2S3 and MoS2 is 5:5, as-prepared nanotremella-like Bi2S3/MoS2 (marked as BMS-5) manifests favorable HER catalytic activity with overpotential of 124 mV at current density of 10 mA cm−2 and relatively low Tafel slope of 123 mV dec−1. Moreover, it exhibits an extraordinary durability for uninterrupted hydrogen generation. The enhanced HER performances are ascribed to the synergistic effects between Bi2S3 and MoS2, giving rise to large electrocatalytic active area and fast HER kinetics. The results pave a new path to design and construct excellent Bi2S3/MoS2 nanomaterials for electrocatalytic hydrogen generation.  相似文献   

10.
In order to improve the OER performance, Ni3S2-based catalysts were directly grown on Ni substrate by simultaneously doping of Fe and compositing with reduced graphene oxide (rGO). Synthesis and loading of Ni3S2/rGO were completed during a one-step hydrothermal process, in which Ni foam acted as support and Ni source of Ni3S2, as well as the subsequent current collector. It is found that either GO or Fe salt tuned Ni3S2 nanosheets into thinner and smaller interconnected nanosheets anchored on rGO, which enhanced the charge transfer resistance and improved the active sites. Hence, as-synthesized Fe-doped Ni3S2/rGO composite at 120 °C (Fe-2-Ni3S2/rGO@NF-120) exhibited an enhancement on OER performances: An overpotential of 247 mV at 20 mA cm−2, and a small Tafel slope of 63 mV dec−1, as well as an excellent stability of: 20 h maintaining at 20 mA cm−2 or 50 mA cm−2.  相似文献   

11.
Exploring inexpensive and earth-abundant electrocatalysts for hydrogen evolution reactions is crucial in electrochemical sustainable chemistry field. In this work, a high-efficiency and inexpensive non-noble metal catalysts as alternatives to hydrogen evolution reaction (HER) was designed by one-step hydrothermal and two-step electrodeposition method. The as-prepared catalyst is composed of the synergistic MoS2–Co3S4 layer decorated by ZnCo layered double hydroxides (ZnCo-LDH), which forms a multi-layer heterostructure (ZnCo/MoS2–Co3S4/NF). The synthesized ZnCo/MoS2–Co3S4/NF exhibits a small overpotential of 31 mV and a low Tafel plot of 53.13 mV dec?1 at a current density of 10 mA cm?2, which is close to the HER performance of the overpotential (26 mV) of Pt/C/NF. The synthesized ZnCo/MoS2–Co3S4/NF also has good stability in alkaline solution. The excellent electrochemical performance of ZnCo/MoS2–Co3S4/NF electrode originates from its abundant active sites and good electronic conductivity brought by the multilayer heterostructure. This work provides a simple and feasible way to design alkaline HER electrocatalysts by growing heterostructures on macroscopic substrates.  相似文献   

12.
Finding a suitable replacement for the high potential of anodic water electrolysis (oxygen evolution reaction (OER)) is significant for hydrogen energy storage and conversion. In this work, a simple and scalable method synthesizes a structurally unique Ni3N nanoarray on Ni foam, Ni3N-350/NF, that provides efficient electrocatalysis for the urea oxidation reaction (UOR) that transports 10 mA cm−2 at a low potential of 1.34 V. In addition, Ni3N-350/NF exhibits electro-defense electrocatalytic performance for hydrogen evolution reaction, which provides a low overpotential of 128 mV at 10 mA cm−2. As proof of concept, all-water-urea electrolysis measurement is carried out in 1 M KOH with 0.5 M Urea with Ni3N-350/NF as cathode and anode respectively. Ni3N-350/NF||Ni3N-350/NF electrode can provide 100 mA cm−2 at a voltage of only 1.51 V, 160 mV less than that of water electrolysis, which proves its commercial viability in energy-saving hydrogen production.  相似文献   

13.
Seawater electrolysis has become an efficient method which makes full use of natural resources to produce hydrogen. However, it suffers high energy cost and chloride corrosion. Herein, we first present a Ni2P/Co(PO3)2/NF heterostructure in which Co(PO3)2 with the nano-rose morphology in-situ grown on the rough Ni2P/NF. The unique 3D nano-rose structure and the optimized electronic structure of the heterostructure enable Ni2P/Co(PO3)2/NF super-hydrophilic and super-aerophobic characteristics, and highly facilitate hydrogen evolution reaction (HER) kinetics in alkaline fresh water, alkaline seawater and even industrial wastewater at large current density, which is rarely reported. Significantly, at large current densities, Ni2P/Co(PO3)2/NF only requires overpotentials of 217 and 307 mV for HER to achieve 1000 mA cm−2 in alkaline fresh water and alkaline seawater, respectively, and requires an overpotential of 469 mV for HER to deliver 500 mA cm−2 in industrial wastewater. Furthermore, the overall seawater splitting system in the two-electrode electrolyzer only requires voltage of 1.98 V to drive 1000 mA cm−2, which also demonstrates significant durability to keep 600 mA cm−2 for at least 60 h. This study opens a new avenue of designing high efficiency electrocatalysts for hydrogen production at large current densities in alkaline seawater and industrial wastewater.  相似文献   

14.
The development of inexpensive and competent electrocatalysts for high-efficiency hydrogen evolution reaction (HER) has been greatly significant to realize hydrogen production in large scale. In this paper, we selected the inexpensive and commercially accessible stainless steel as the conductive substrate for loading MoS2 as a cathode for efficient HER under alkaline condition. Interconnected MoS2 nanosheets were grown uniformly on 316-type stainless steel meshes with different mesh numbers via a facile hydrothermal way. And the optimized MoS2/stainless steel electrocatalysts exhibited superior electrocatalytic performance for HER with a low overpotential of 160 mV at 10 mA cm−2 and a small Tafel slope of 61 mV dec−1 in 1 M KOH. Systematic study of the electrochemical properties was performed on the MoS2/stainless steel electrocatalysts in comparison with the commonly used carbon cloth to better comprehend the origin of the superior HER performance as well as stability. By collaborative optimization of MoS2 nanosheets and the cheap stainless steel substrate, the interconnected MoS2 nanosheets on stainless steel provide an alternative strategy for the development of efficient and robust HER catalysts in strong alkaline environment.  相似文献   

15.
Reasonable design and preparation of non-noble metal electrocatalysts with predominant catalytic activity and long-term stability for oxygen evolution reaction (OER) are essential for electrocatalytic water splitting. Ni foam (NF) is highlighted for its 3D porous structure, impressive conductivity and large specific surface area. Herein, nano/micro structured dendritic cobalt activated nickel sulfide grown on 3D porous NF (Co–Ni3S2/NF) has been successfully synthesized by one-step hydrothermal method. Due to the ingenious incorporation of Co, Co–Ni3S2/NF electrode shows auspicious electrocatalytic performance for OER compared with Ni3S2/NF electrode. As a result, Co–Ni3S2/NF needs overpotential of only 274 and 459 mV at current density of 10 and 50 mA cm−2, respectively, while Ni3S2/NF requires overpotential of 344 and 511 mV. At potential of 2.0 V (vs. RHE), Co–Ni3S2/NF displays current density of 191 mA cm−2, while Ni3S2/NF just attains current density of only 135 mA cm−2. Moreover, Co–Ni3S2/NF demonstrates excellent stability for uninterrupted OER in alkaline electrolyte. The strategy of designing and preparing cobalt activated nickel sulfide grown on NF renders a magnificent prospect for the development of metal-sulfide-based oxygen evolution catalysts with excellent electrocatalytic performances.  相似文献   

16.
It is great important to develop and explore a non-precious bifunctional electrocatalyst with high efficiency and good stability for Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER) in alkaline electrolyte. Herein, a three-dimensional (3D) needle-like MoS2/NiS heterostructure supported on Nickel Foam (NF) (MoS2/NiS/NF) is synthesized by a simple hydrothermal method for the first time, which can act as a good bifunctional electrocatalyst for overall water splitting. As expected, the optimal MoS2/NiS/NF exhibits excellent catalytic performance with a low overpotential of 87 and 216 mV at 10 mA cm−2 for HER and OER in 1 M KOH electrolyte, respectively, accompanied by good cycle stability. Furthermore, the MoS2/NiS/NF as bifunctional electrocatalyst in an electrolyzer shows high efficiency with a cell voltage of 1.5 V at 10 mA cm−2, as well as superior durability. The present work may open a new direction to design and develop a non-precious bifunctional electrocatalyst with excellent catalytic activity for water splitting in the future.  相似文献   

17.
The design and development of highly efficient and stable non-noble metal electrocatalysts for hydrogen evolution reaction (HER) have attracted increasing attention. However, some key issues related to large overpotential, high cost and poor stability at high current density still remains challenging. In this work, we report a facile in-situ integration strategy of porous Ni2P nanosheet catalysts on 3D Ni foam framework (PNi2P/NF) for efficient and stable HER in alkaline medium. The two-step method can creates high density of ultra-thin porous Ni2P nanosheets firmly rooted into Ni foam substrate which can guarantee excellent electrical contacts, strong substrate adherence and large amount of active sites. Such a binder-free flexible HER cathode exhibits superior electrocatalytic performance with an overpotential of 134 mV at current density of 10 mA cm−2. It also shows superior stability at higher current densities of 100 and 500 mA cm−2 for at least 48 h and negligible performance degradation is observed.  相似文献   

18.
Self-standing and hybrid MoS2/Ni3S2 foam is fabricated as electrocatalyst for hydrogen evolution reaction (HER) in alkaline medium. The Ni3S2 foam with a unique surface morphology results from the sulfurization of Ni foam showing a truncated-hexagonal stacked sheets morphology. A simple dip coating of MoS2 on the sulfurized Ni foam results in the formation of self-standing and hybrid electrocatalyst. The electrocatalytic HER performance was evaluated using the standard three-electrode setup in the de-aerated 1 M KOH solution. The electrocatalyst shows an overpotential of 190 mV at ?10 mA/cm2 with a Tafel slope of 65.6 mV/dec. An increased surface roughness originated from the unique morphology enhances the HER performance of the electrocatalyst. A density functional approach shows that, the hybrid MoS2/Ni3S2 heterostructure synergistically favors the hydrogen adsorption-desorption steps. The hybrid electrocatalyst shows an excellent stability under the HER condition for 12 h without any performance degradation.  相似文献   

19.
Hindered by price and scarcity, the exploitation of supported Pt-based electrocatalysts with Pt single atoms or Pt nanoclusters is an alternative way to decrease the dosage of Pt and improve the electrocatalytic performance for hydrogen evolution reaction (HER) of water splitting. The anodization technology is used to modify the surface of nickel foam (NF) to form the porous NiF2 network structure. Then Pt nanodots interfaced with Ni(OH)2 (Pt/Ni(OH)2) hybrid on the anodized NF has been in-situ synthesized by a simple hydrothermal decomposition method. Results show that Pt nanodots on the substrate have good dispersion with the average size of 3 nm, and the Pt loading is only 0.229 mg cm−2. The prepared electrode exhibits the low overpotentials of 25.9 mV and 211 mV at the current densities of 10 and 100 mA cm−2, respectively, a small Tafel slope of 37.6 mV dec−1, and the excellent durability for HER. The porous network nanostructure of Pt/Ni(OH)2 hybrid, the large electrochemical surface area, the fast facilitated electron transport capability, and the firm adhesion of Pt nanodots with the anodized NF substrate contribute to the remarkable performance towards HER.  相似文献   

20.
Herein we report a heterostructure with ultrathin nanosheets of Co-doped molybdenum sulfide on CdS nanorod array (donated as CdS@CoMo2S4/MoS2) by hydrothermal synthesis. Firstly, elemental Co doping MoS2 (CoMo2S4) delivers the double benefits of increased active sites and enhanced conductivity. Secondly, the structural characteristics maximally exposes the MoS2 edges and enlarges interfacial contact area between the composite catalyst and electrolyte, as well as the efficient interfacial charge transfer. The ratio of CoMo2S4/MoS2 in CdS@CoMo2S4/MoS2 plays a crucial role for the enhanced photo-assistant electrocatalytic hydrogen evolution reaction (HER). We can tune the ratio of CoMo2S4/MoS2 by controlling the preparation time or the ratio of precursor of Co/Mo. The catalyst with predominant MoS2 phase shows superior photocatalytic HER performance with a high H2 production rate of 46.60 μmol mg−1 h−1. Meanwhile, the catalyst with predominant CoMo2S4 phase exhibits not only relatively low overpotential of 172 mV at 10 mA cm−2, which outperforms most values that have been reported on catalyst supported on ITO substrate, but also possesses H2 production rate of 23.47 μmol mg−1 h−1. The superior photo-assistant electrocatalytic HER activity results from the synergistically structural and electronic modulations, as well as the proper energy band alignment between MoS2 and CdS. This investigation could provide an approach to integrate the electro- and photocatalytic activities for HER, especially the photo responding behaviour at a bias potential which is meaningful to produce H2 for actual application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号