首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Anion exchange membrane (AEM) water electrolysis is considered a promising solution to future cost reduction of electrochemically produced hydrogen. We present an AEM water electrolyzer with CuCoOx as the anode catalyst and Aemion as membrane and electrode binder. Full cell experiments in pure water and 0.1 M KOH revealed that the optimum binder content depended on the type of electrolyte employed. Online dissolution measurements suggested that Aemion alone was not sufficient to establish an alkaline environment for thermodynamically stabilizing the synthesized CuCoOx in a neutral electrolyte feed. A feed of base is thus indispensable to ensure the thermodynamic stability of such non-noble catalyst materials. Particle loss and delamination of the catalyst layer during MEA operation could be reduced by employing a heat treatment step after electrode fabrication. This work summarizes possible degradation pathways for low-cost anodes in AEMWE, and mitigation strategies for enhanced system durability and performance.  相似文献   

2.
Anion exchange membrane (AEM) water electrolyzers are expected to be novel devices for hydrogen (H2) production that achieve high performance at low capital cost. The effect of catalyst distribution in anode porous transport electrodes (PTEs) on the performance of AEM water electrolysis is experimentally examined. Based on the analysis of the correlation between the PTE structure and the electrolysis performance, it was revealed that the surface catalyst coverage is related to the activation overpotential, and that the location and compactness of the catalyst layer (CL) affects the concentration overpotential. This suggests that the water diffusion through the membrane is related to the concentration overpotential, and that denser CLs can promote water diffusion and thus mitigate the concentration overpotential. Based on the electrolysis data with PTEs of different thickness, it was also revealed that decreasing the thickness of the anode PTE enables good performance with low catalyst loading.  相似文献   

3.
Catalyst coated membrane (CCM) is the core component of proton exchange membrane (PEM) water electrolysis and the main place for electrochemical reaction and mass transfer. Its properties directly affect the performance of PEM water electrolysis. Aiming at decreasing the polarization loss and the ohmic loss, a novel CCM embedded with Cs1.5HPA in the skeleton of the Nafion® ionomer and the Nafion® membrane was prepared and possessed functionality of improved protonic conductivity. Meanwhile, the Cs1.5HPA-Nafion ionomer content in the catalyst layers was further optimized. The SEM, EDS and pore volume distribution measurement showed that the Cs1.5HPA embedded in the CCM without agglomeration and the micropore and mesopore were well distributed in the catalyst layer. Furthermore, CCMs were tested in a PEM water electrolyser at 80 °C, beneficial effects on both the Tafel slope and the iR loss were obtained due to the improved protonic conductivity as well as the appropriate pore structure and increased specific pore volume. The performance of the electrolyser cell was obviously improved with the novel CCM. The highest cell performance of 1.59 V at 2 A cm−2 was achieved at 80 °C. At 35 °C and 300 mA cm−2, the cell showed good durability within the test period of up to 570 h.  相似文献   

4.
Tuning nickel-based catalyst activity and understanding electrolyte and ionomer interaction for oxygen evolution reaction (OER) is crucial to improve anion exchange membrane (AEM) water electrolyzers. Herein, an investigation of multimetallic Ni0.6Co0.2Fe0.2 OER activity, coupled with in-situ Raman spectroscopy to track dynamic structure changes, was carried out and compared to other Ni catalysts. The effect of KOH concentration, KOH purity, ionomer type, and electrolyte with organic cations was evaluated. The Ni0.6Co0.2Fe0.2 catalyst achieved 10 mA/cm2 at 260 mV overpotential with stability over 50 h and 5000 cycles in 1 M KOH. In-situ Raman spectroscopy showed that Ni0.6Co0.2Fe0.2 activity originates from promoting Ni(OH)2/NiOOH transformation at low potentials compared to bi- and mono-metallic nickel-based catalysts. Fumion anion ionomer in the catalyst inks led to a lower OER activity than catalysts with inks containing Nafion ionomer. The OER activity of Ni0.6Co0.2Fe0.2 is adversely influenced in the presence of fumion anion ionomer and benzyltrimethylammonium hydroxide (BTMAOH) with possible phenyl oxidation under applied high anodic potentials. The alkaline AEM water electrolyzer circulating 1 M KOH electrolyte, with a Pt/C cathode and a Ni0.6Co0.2Fe0.2 anode, achieved 1.5 A/cm2 at 2 V.  相似文献   

5.
This paper reports the performance of a graphene oxide modified non noble metal based electrode in alkaline anion exchange water electrolyzer. The electrolytic cell was fabricated using a polystyrene based anion exchange membrane and a ternary alloy electrode of Ni as cathode and oxidized Ni electrode coated with graphene oxide as anode. The electrochemical activity of the graphene oxide modified electrode was higher than the uncoated electrode. The anion exchange membrane water electrolyzer (AEMWE) with the modified electrode gave 50% higher current density at 30 °C with deionised water compared to that of an uncoated electrode at 2 V. Performance was found to increase with increase in temperature and with the use of alkaline solutions. The results of the solid state water electrolysis cell are promising method of producing low cost hydrogen.  相似文献   

6.
A novel catalyst-coated membrane (CCM) for solid polymer electrolyte water electrolysis was fabricated by together crystallizing partial-crystallized Nafion membrane and catalyst layers. The properties and performance of the partial-cocrystallized CCM (PCCCM) were evaluated and analyzed by destructive soaking test, scanning electron microscope, mercury intrusion and single cell test. The results revealed that the optimum annealing temperature and time for fabricating partial-crystallized Nafion membrane and PCCCM was 100 °C for 4 h and 120 °C for 4 h, respectively. The PCCCM not only possessed much stronger cohesion between membrane and catalyst layers, but also had higher porosity than conventional CCM. The electrolysis voltage of the SPE water electrolyser with the new CCM was as low as 1.748 V at 2000 mA cm−2 under 80 °C and atmospheric pressure. Moreover, there was no obvious increase of electrolysis voltage during stability test conducted under 2000 mA cm−2 for about 180 h.  相似文献   

7.
Various anion-exchange membranes (AEMs) were studied in the electrolysis cell using the non-precious metal-based catalysts showing the good potential of selected AEMs in low-cost water electrolysis application. The 0.1–1 M potassium hydroxide electrolyte is applied for high performance electrolysis process, whereas the usage of pure water leads to the significant AEM resistance increase. The post mortem MEA analysis, using SEM is performed to study the structure and morphology of catalyst layers transferred from the electrodes prepared by catalyst coated substrate approach. The importance of the catalyst layer–membrane interface and the binder used to bond the catalyst layer is discussed. AEM electrolysis safety aspect in terms of the hydrogen crossover through the 28 μm thin A-201 membrane is studied. The linear dependency of the permeated hydrogen flux on current density is shown. Hydrogen content in the anode outlet gas is less enough to ensure high safety of the AEM electrolysis technology in the operating currents range.  相似文献   

8.
A series of three membrane types has been screened for medium temperature solid polymer electrolyte water electrolysis in membrane electrode assemblies coated with 2 mg cm−2 of iridium oxide as a catalyst for the oxygen evolution reaction, synthesised via a hydrolysis method from the hexachloroiridic acid precursor, and deposited on the membrane either directly by spray deposition or by decal transfer. The short-side-chain perfluorosulfonic acid Aquivion® ionomer of equivalent weight 870 meq g−1, in membranes of thickness 120 μm, gives higher water electrolysis performance at 120 °C than a composite membrane of Aquivion® with zirconium phosphate, while a sulfonated ether-linked polybenzimidazole, sulfonated poly-[(1-(4,4′-diphenylether)-5-oxybenzimidazole)-benzimidazole], shows promising performance and no transport limitations up to 2 A cm−2. The lowest cell voltage was observed at 120 °C for an MEA prepared using spray-coating directly on the Aquivion® membrane, 1.57 V at 1 A cm−2.  相似文献   

9.
Anion exchange membrane (AEM) water electrolyzers are promising energy devices for producing low-cost and clean hydrogen using platinum group metals (PGMs). However, AEM water electrolyzers still do not show satisfactory performance due to the sluggish kinetics of the electrodes. In this work, copper cobalt hydroxide (CuCo-hydroxide) nanosheet was synthesized on commercial nickel foam (NF) via electrochemical co-precipitation, and used directly as an oxygen evolution reaction (OER) electrode for an AEM electrolyzer. The interaction between Cu and Co induces a change in the electronic structure of Co(OH)2 and improves the performance of the OER electrode. In addition, the AEM electrolyzers catalyzed by CuCo(OH)2 showed high energy conversion efficiency of 73.5%. This work demonstrates that non-PGM based electrodes fabricated using a simple electrochemical co-precipitation apply to AEM electrolyzers for low-cost and clean hydrogen production.  相似文献   

10.
In this study, we investigated the long-term stability of anion exchange membrane water electrolyzers (AEMWEs) under various bias conditions. The cell performance was relatively stable under conditions of voltage cycling in a narrow range, constant voltage and constant current. On the other hand, a relatively dynamic condition, voltage cycling, in a wide range detrimentally affected the cell stability. Abnormally high negative and positive currents were observed when the cell voltage was switched between 2.1 and 0 V. Impedance results and post-material analyses indicated that the performance degradation was mainly due to anode catalyst detachments, which increased non-ohmic resistance in the wide range voltage cycling. An increase in ohmic resistance was also observed, which was due to the membrane dehydration that occurred in the frequent rest times. Thus, it can be said that the voltage cycling range as well as the frequency of rest times are critical operational parameters in determining the long-term stability of AEMWEs.  相似文献   

11.
The effect of water diffusion through an anion exchange membrane (AEM) on the concentration overpotential (ηconc) during cathode dry operation of AEM water electrolysis was experimentally examined using electrolytic cells with different membrane electrode assemblies (MEAs). The specially designed MEAs were used in the cells to obtain reliable and reproducible data to clarify the influence of membrane thickness (tmem) and porosity of cathode catalyst layer (CL). The relative humidity of generated hydrogen (?H2) during electrolysis was also measured based on dew point measurements of the hydrogen. The ηconc analysis for cells with single- and double-AEM MEAs revealed that water diffusion through the membrane was the main contributor to ηconc. The quantitative agreement between ?H2 data and ηconc revealed that the difference in ηconc between the two types of MEAs is explained by the water concentration difference between anode and cathode via the Nernst equation. The effect of the porosity of the cathode CL on cell performance and on water transport was also examined experimentally. The results revealed that a high-porosity cathode CL tended to keep the cathode in a drier state during electrolysis compared with a low-porosity cathode CL. When ?H2 is lower than a threshold value in the range from 0.5 to 0.6, the ion conductivity of AEM and ionomer would decrease, and the cell performance would deteriorate due to an increase in cell resistance (Rcell) and/or activation overpotential (ηact).  相似文献   

12.
It is highly desirable to synthesize and deploy low-cost and highly efficient catalysts for the oxygen evolution reaction (OER) to catalyze water splitting. We show that N/C doped amorphous iridium oxide combines the benefits of nano-size (approximately 2 nm), which results in exposure to large active surface areas and features of oxygen defects, which make for an electronic structure suitable for the OER. Systematic studies indicate that the OER activity of the iridium oxide catalyst is accelerated by the effect of the structure and chemical state of the iridium element. Remarkably, the N/C doped amorphous iridium oxide catalyst shows a lower cell voltage of 1.774 V at 1.5 A cm−2, compared with IrO2 (1.847 V at 1.5 A cm−2), and it can maintain such a high current density for over 200 h without noticeable performance deterioration. This work provides a promising method for the improving OER electrocatalysts and the construction of an efficient and stable PEM water cracking system.  相似文献   

13.
The effect of species and concentration of electrolytic solution on the performance of anion exchange membrane (AEM) water electrolysis is experimentally examined. When potassium hydroxide (KOH) or potassium carbonate (K2CO3) solution is applied for the electrolytic solution, electrolysis is successful under mild alkaline conditions, whereas electrolysis with pure water is quite difficult due to the high resistance of the AEM. AEM electrolysis performance with K2CO3 solution is superior to that with KOH solution, even at similar pH of around 12. Hydrogen content in the anode gas compartment and relative humidity of produced hydrogen are also measured during the electrolysis.  相似文献   

14.
In proton exchange membrane (PEM) water electrolysis, iridium oxide (IrO2) has often been utilized as a main catalyst for the oxygen evolution reaction (OER) as a rate-determining step. In general, the performance of PEM water electrolysis is dominantly affected by the specific surface area and the porous structure of the IrO2 catalyst. Thus, in this study, IrO2 and antimony-doped tin oxide (ATO) nanostructures with high specific surface areas were synthesized through the Adams fusion method. The as-prepared samples showed well-defined porous high-crystalline nanostructures. The ATO nanoparticles as a support were surrounded by IrO2 nanoparticles as a catalyst without serious agglomeration, indicating that the IrO2 catalyst was uniformly distributed on the ATO support. Compared to pure IrO2, the IrO2/ATO mixture electrodes showed superior OER properties because of their increased electrochemical active sites.  相似文献   

15.
In this study, the correlation effect of catalyst loading (Lc) and ionomer content (Ciono) on the performance of polymer electrolyte membrane water electrolysis (PEMWE) is investigated. Sixteen membrane electrode assemblies are constructed and electrochemically evaluated using a cross-combination of two factors. Although the coupling of the two factors does not significantly affect the performance at a low working voltage, the effect is dominant at a high working voltage. Based on the establishment of correlations between the changes in the contributing factors (including the ionomer fraction, thickness, and porosity) caused by variations in the two factors, the effects on the kinetic, ohmic, and mass transfer overpotential are estimated and analyzed. Since the Ciono and Lc simultaneously affect the porosity, the required Ciono for achieving the best performance changes according to the Lc and vice versa. Additionally, a rapid drop in performance when the Ciono exceeds 25 wt% is due to the inhibited electron transfer in electrode and interface between the electrode and porous transport layers, and a critical ionomer concentration is proposed. Finally, high-performance PEMWE (6.882 A cm?2 at 2.05 V) is achieved with a low Lc of 0.5 mg cm?2 and a Ciono of 10 wt%.  相似文献   

16.
Co based catalyst were evaluated for oxygen reduction (ORR) in liquid KOH and alkaline anion exchange membrane fuel cells (AAEMFCs). In liquid KOH solution the catalyst exhibited good performance with an onset potential 120 mV more negative than platinum and a Tafel slope of ca. 120 mV dec−1. The hydrogen peroxide generated, increased from 5 to 50% as the electrode potential decreased from 175 to −300 mV vs. SHE.In an AAEMFC environment, one catalyst (GP2) showed promising performance for ORR, i.e. at 50 mA cm−2 the differences in cell potential between the stable performance for platinum (more positive) and cobalt cathodes with air and oxygen, were only 45 and 67 mV respectively. The second catalyst (GP4) achieved the same stable power density as with platinum, of 200 and 145 mW cm−2, with air at 1 bar (gauge) pressure and air (atm) cathode feed (60 °C), respectively. However the efficiency was lower (i.e. cell voltage was lower) i.e. 40% in comparison to platinum 47.5%.  相似文献   

17.
Anion exchange membranes with enough alkaline stability and ionic conductivity are essential for water electrolysis. In this work, a class of anion exchange membranes (PAES-TMI-x) with dense 1,2,4,5-tetramethylimidazolium side chains based on poly(aryl ether sulfone)s are prepared by aromatic nucleophilic polycondensation, radical substitution and Menshutkin reaction. Their chemical structure and hydrophilic/hydrophobic phase morphology are characterized by hydrogen nuclear magnetic resonance (1H NMR) and atomic force microscope (AFM), respectively. The water uptake, swelling ratio and ionic conductivity for PAES-TMI-x are in the range of 23.8%–48.3%, 8.3%–14.3% and 18.22–96.31 mS/cm, respectively. These AEMs exhibit high alkaline stability, and the ionic conductivity for PAES-TMI-0.25 remains 86.8% after soaking in 2 M NaOH solution at 80 °C for 480 h. The current density of 1205 mA/cm2 is obtained for the water electrolyzer equipped with PAES-TMI-0.25 in 2 M NaOH solution at 2.0 V and 80 °C, and the electrolyzer also has good operation stability at current density of 500 mA/cm2. This work is expected to provide a valuable reference for the selection and design of cations in high-performance AEMs for water electrolysis.  相似文献   

18.
A stable, platinum-free catalyst-coated anion-exchange membrane with a promising performance for alkaline water electrolysis as an energy conversion technology was prepared and tested. A hot plate spraying technique used to deposit electrodes 35 or 120 μm thick on the surface of an anion-selective polymer electrolyte membrane. These thicknesses of 35 and 120 μm corresponding to the catalyst load of 2.5 and 10 mg cm−2. The platinum free catalysts based on NiCo2O4 for anode and NiFe2O4 for cathode were used together with anion selective polymer binder in the catalyst/binder ratio equal to 9:1. The performance of the prepared membrane-electrode assembly was verified under conditions of alkaline water electrolysis using different concentrations of liquid electrolyte ranging from 1 to 15 wt% KOH. The electrolyser performance was compared to a cell utilizing a catalyst-coated Ni foam as the electrodes. The prepared membrane-electrode assembly stability at a current load of 0.25 A cm−2 was verified by a 72-hour electrolysis test. The results of the experiments indicated the possibility of a significant reduction of the catalyst loading compared to a catalyst-coated substrate approach.  相似文献   

19.
In this work, a catalyst sprayed membrane under irradiation (CSMUI) method was investigated to develop high performance membrane electrode assembly (MEA) for solid polymer electrolyte (SPE) water electrolysis. The water electrolysis performance and properties of the prepared MEA were evaluated and analyzed by polarization curves, electrochemistry impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The characterizations revealed that the CSMUI method is very effective for preparing high performance MEA for SPE water electrolysis: the cell voltage can be as low as 1.564 V at 1 A cm−2 and the terminal voltage is only 1.669 V at 2 A cm−2, which are among the best results yet reported for SPE water electrolysis with IrO2 catalyst. Also, it is found that the noble metal catalysts loadings of the MEA prepared by this method can be greatly decreased without significant performance degradation. At a current density of 1 A cm−2, the MEA showed good stability for water electrolysis operating: the cell voltage remained at 1.60 V without obvious deterioration after 105 h operation under atmosphere pressure and 80 °C.  相似文献   

20.
Spinel oxide electrocatalysts supported on carbon nanofibers (CNFs), denoted as and NiMn2O4/CNF and NiCo2O4/CNF, are investigated for the oxygen evolution reaction (OER) in alkaline electrolyte. NiCo2O4/CNF and NiMn2O4/CNF are prepared according to an optimized electrospinning method using polyacrylonitrile (PAN) as carbon nanofibers precursor. After the thermal treatment at 900 °C for 1 h in the presence of helium and the subsequent one at 350 °C for 1 h in air, nanosized metal oxides with a spinel structure supported on carbon nanofibers are obtained. The physico-chemical investigation shows relevant difference in the crystallite size (9 nm for the NiCo2O4/CNF and 20 nm for the NiMn2O4/CNF) and a more homogeneous distribution for NiMn2O4 supported on carbon nanofibers. These characteristics derive from the different catalytic effects of Co and Mn during the thermal treatment as demonstrated by thermal analysis. The OER activity of NiCo2O4/CNF and NiMn2O4/CNF is studied in a single cell based on a zero gap anion-exchange membrane-electrode assembly (MEA). The NiMn2O4/CNF shows a better mass activity than NiCo2O4/CNF at 50 °C (116 A g−1 @ 1.5 V and 362 A g−1 @ 1.8 V vs. 39 A g−1 @ 1.5 V and 253 A g−1 @ 1.8 V) but lower current density at specific potentials. This is the consequence of a lower concentration of the active phase on the support resulting from the need to mitigate the particle growth in NiMn2O4/CNF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号