首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High temperature heat transfer and thermochemical storage performances of the solar driven bi-reforming of methane (SDSCB-RM) in a solar thermochemical micro-packed bed (ST-μPB) reactor are numerically investigated under different operating conditions along ST-μPB reactor length. A pseudo-homogeneous mathematical model is developed to simulate the heat and mass transfer processes coupled with thermochemical reaction kinetics in ST-μPB reactor with radiative heat loss. The effect of several parameters including the gas flow rate (Qg), effective thermal conductivity (λs,eff), operating time (ti) and operating temperature (Top.) were investigated. The simulated results shown that the pressure drop increases with the increase of Qg. When the Qg is increased, the temperature profiles at the surface of the solid phase as well as the temperature profiles of the gas phase are remarkably decreasing. The consumption of reactants (CH4, H2O and CO2) is increased when the λs,eff is gradually increased. On the other hand, the production of products (H2, and CO) is remarkably increasing with the increase of the λs,eff. According to simulated results, the overall conversions of reactants (CH4 and CO2) and the dimensionless flow rate (DFR) of H2 reach the maximum values of 98.18%, 75.61% and 1.6278 at the operating time of 2.50 h. The thermochemical energy storage efficiency (ηChem) remarkably increases with the operating temperature and the maximum value of the ηChem can be as high as 74.21% at 1123 K. The overall conversions of reactants (CH4 and CO2), DFR of H2 and the energy stored as chemical enthalpy (QChem) were also evaluated in relation to the operating temperature and their maximum values of 99.43%, 89.03%, 1.6383 and 1.3745 kJ/s are obtained at 1225 K.  相似文献   

2.
A stainless steel micro-channel reactor was tailor-made to an in house-design for process intensification propose. The reactor was used for a two-step thermochemical cycles of H2O and CO2 co-splitting reaction, in the presence of La0.3Sr0.7Co0.7Fe0.3O3 (LSCF). LSCF was coated inside the reactor using wash-coat technique. Oxygen storage capacity of LSCF was determined at 4465 μmol/g, using H2-TPR technique. H2O-TPSR and CO2-TPSR results suggested that a formation of surface hydroxyl group was the cause of H2O splitting favorable behavior of LSCF. Optimal operating reduction/oxidation temperature was found at 700 °C, giving 2266 μmol/g of H2, 705 μmol/g of CO, and 67% of solid conversion, when the H2O and CO2 ratio was 1 to 1, and WSHV was 186,000 mL/g.h. Activation energy of H2O spitting and CO2 splitting was estimated at 87.33 kJ/mol, and 102.85 kJ/mol The pre-exponential factor of H2O splitting and CO2 splitting was 595.24 s?1 and 698.79 s?1, respectively.  相似文献   

3.
The main purpose of this work is to elucidate the thermochemical characteristics of a fluidized bed reactor to be used as a solar reactor in thermal energy storage. Zinc sulfate dissociation was studied over the temperature range from 973 to 1123 K. During the reaction problems such as non isothermisity of the bed and pressure drop changes with the reaction, were detected. It was shown that the fluidity increased with temperature and degree of dissociation, but the pressure drop amplitude increased exponentially with gas velocity and particle size when slugging is present in the bed.  相似文献   

4.
Steam reforming of propane was carried out in a fluidized bed membrane reactor to investigate a feedstock other than natural gas for production of pure hydrogen. Close to equilibrium conditions were achieved inside the reactor with fluidized catalyst due to the very fast steam reforming reactions. Use of hydrogen permselective Pd77Ag23 membrane panels to extract pure hydrogen shifted the reaction towards complete conversion of the hydrocarbons, including methane, the key intermediate product. Irreversible propane steam reforming is limited by the reversibility of the steam reforming of this methane. To assess the performance improvement due to pure hydrogen withdrawal, experiments were conducted with one and six membrane panels installed along the height of the reactor. The results indicate that a compact reformer can be achieved for pure hydrogen production for a light hydrocarbon feedstock like propane, at moderate operating temperatures of 475–550 °C, with increased hydrogen yield.  相似文献   

5.
Gasification is a thermo-chemical reaction which converts biomass into fuel gases in a reactor. The efficiency of conversion depends on the effective working of the gasifier. The first step in the conversion process is the selection of a suitable feedstock capable of generating more gaseous fuels. This paper analyses the performance of different biomasses during gasification through energy and exergy analysis. A quasi-equilibrium model is developed to simulate and compare the feasibility of different biomass materials as gasifier feedstock. Parametric studies are conducted to analyze the effect of temperature, steam to biomass ratio and equivalence ratio on energy and exergy efficiencies. Of the biomasses considered, sawdust has the highest energy and exergy efficiencies and lowest irreversibility. At a gasification temperature of 1000 K, the steam to biomass ratio of unity and the equivalence ratio of 0.25, the energy efficiency, exergy efficiency and irreversibility of sawdust are 35.62%, 36.98% and 10.62 MJ/kg, respectively. It is also inferred that the biomass with lower ash content and higher carbon content contributes to maximum energy and exergy efficiencies.  相似文献   

6.
A novel receiver/reactor driven by concentrating solar energy for hydrogen production by supercritical water gasification (SCWG) of biomass was designed, constructed and tested. Model compound (glucose) and real biomass (corncob) were successfully gasified under SCW conditions to generate hydrogen-rich fuel gas in the apparatus. It is found that the receiver/reactor temperature increased with the increment of the direct normal solar irradiation (DNI). Effects of the DNI, the flow rates and concentration of the feedstocks as well as alkali catalysts addition were investigated. The results showed that DNI and flow rates of reactants have prominent effects on the temperature of reactor wall and gasification results. Higher DNI and lower feed concentrations favor the biomass gasification for hydrogen production. The encouraging results indicate a promising approach for hydrogen production with biomass gasification in supercritical water using concentrated solar energy.  相似文献   

7.
Steam methane reforming is an endothermic reaction and it used to produce hydrogen and syngas. In this research, a factorial design is developed for an integrated Pd-based membrane reactor, producing hydrogen by methane steam reaction. In literature, no analogous works are present, because a simple sensitivity analysis is carried out without finding significant factors for the process. The reactor is modelled in MATLAB software using the Numaguchi kinetic. The reactor does not use conventional catalysts, but a Ni(10)/CeLaZr catalyst supported on SSiC ceramic foam. In ANOVA analysis, inlet temperature (550 K-815 K), methane flow rate in the feed (0.1 kmol/h-1 kmol/h), hydrogen permeability (1000 m3μmm2hrbar0.5–3600 m3μmm2hrbar0.5), the thickness of membrane (0.003 m-0.02 m) are the chosen factors. The analyzed responses are: hydrogen yield, carbon dioxide conversion and methane conversion. Results show that only inlet temperature, methane flow rate, their interaction and the thickens of membrane are significant. Also, the optimal operating conditions are obtained with inlet temperature, methane flow rate, hydrogen permeability and thickness of membrane equal to 550 K, 0.1 kmol/h, 3600 m3μmm2hrbar0.5 and 0.003 m.  相似文献   

8.
Biomass gasification is an attractive process to produce high-value syngas. Utilization of concentrated solar energy as the heat source for driving reactions increases the energy conversion efficiency, saves biomass resource, and eliminates the needs for gas cleaning and separation. A high-temperature tubular solar reactor combining drop tube and packed bed concepts was used for continuous solar-driven gasification of biomass. This 1 kW reactor was experimentally tested with biomass feeding under real solar irradiation conditions at the focus of a 2 m-diameter parabolic solar concentrator. Experiments were conducted at temperatures ranging from 1000 °C to 1400 °C using wood composed of a mix of pine and spruce (bark included) as biomass feedstock. This biomass was used under its non-altered pristine form but also dried or torrefied. The aim of this study was to demonstrate the feasibility of syngas production in this reactor concept and to prove the reliability of continuous biomass gasification processing using solar energy. The study first consisted of a parametric study of the gasification conditions to obtain an optimal gas yield. The influence of temperature, oxidizing agent (H2O or CO2) or type of biomass feedstock on the product gas composition was investigated. The study then focused on solar gasification during continuous biomass particle injection for demonstrating the feasibility of a continuous process. Regarding the energy conversion efficiency of the lab scale reactor, energy upgrade factor of 1.21 and solar-to-fuel thermochemical efficiency up to 28% were achieved using wood heated up to 1400 °C.  相似文献   

9.
Biosyngas production from renewable sources such as biomass has no impact on atmospheric CO2 levels. In this work, the initial tests results are presented for the conversion of waste cooking oil (WCO) to biosyngas by catalytic partial oxidation over a granular Ni-based catalyst. In addition, autothermal reforming of propane with water and normal air was also carried out. The investigations were performed in a partially adiabatic plasma-assisted (non-thermal) gliding arc (GlidArc) reactor at fixed pressure (1 bar) and electric power (0.3 kW). Detailed axial temperature distributions, product concentrations, reactant conversions, H2 and CO yields, H2/CO ratio and thermal efficiency, as a function of the cold and hot WCO flow rate, the water flow rate and the time on stream were studied. Propane and normal air were used as oxidizing components to maintain autothermal operation.  相似文献   

10.
Sulfur-based thermochemical hydrogen production cycles represent one of the most appealing options to produce hydrogen from water on a large scale. The Hybrid Sulfur is one of the most advanced thermochemical cycles. The high temperature section of the process, common to all sulfur-based cycles, operates the sulfuric acid thermal decomposition reaction at temperatures on the order of 800 °C. The paper shows and discusses the modeling results obtained for a bayonet heat exchanger based high temperature reactor that decomposes the sulfur compounds into sulfur dioxide and oxygen. A detailed transport phenomena model, including suitable decomposition kinetics, has been set up using a finite volume numerical approach. A preliminary configuration of the reactor, established based on process simulation results and on the initial reactor prototype developed at Sandia National Laboratory, has been examined and simulated. Results, obtained for a reactor driven by thermal power provided by helium flow, demonstrate the effective decomposition performance at maximum temperatures on the order of 800 °C and pressures of 14 bar. For a laminar flow configuration a sulfur dioxide production yield of about 28 wt% (with sulfur trioxide reduction from 69 wt% to approximately 33 wt%) has been achieved, representing decomposition rates practically equal to the corresponding equilibrium values. Limited pressure drops of approximately 2500 Pa have also been achieved in the sulfur mixture region.  相似文献   

11.
In this study, thermodynamic analysis of the syngas production using biodiesel derived from waste cooking oil is studied based on the chemical looping reforming (CLR) process. The NiO is used as the oxygen carrier to carry out the thermodynamic analysis. Syngas with various H2/CO ratios can be obtained by chemical looping dry reforming (CL-DR) or steam reforming (CL-SR). It is found that the syngas obtained from CL-DR is suitable for long-chain carbon fuel synthesis while syngas obtained from CL-SR is suitable for methanol synthesis. The carbon-free syngas production can be obtained when reforming temperature is higher than 700 °C for all processes. To convert the carbon resulted from biodiesel coking and operate the CLR with a lower oxygen carrier flow rate, a carbon reactor is introduced between the air and fuel reactors for removing the carbon using H2O or CO2 as the oxidizing agent. Because of the endothermic nature of both Boudouard and water-gas reactions, the carbon conversion in the carbon reactor increases with increased reaction temperature. High purity H2 or CO yield can be obtained when the carbon reactor is operated with high reaction temperature and oxidizing agent flow.  相似文献   

12.
Hydrogen production from sucrose in a granule-based upflow anaerobic sludge blanket (UASB) reactor was optimized through employing response surface methodology (RSM) with a central composite design in this study. The individual and interactive effects of influent sucrose concentration (Sin) and hydraulic retention time (HRT) on anaerobic hydrogen production were elucidated. Experimental results show that a maximum hydrogen yield of 1.62 mol-H2/mol-hexose was obtained under the optimum conditions of Sin 14.5 g/L and an HRT 16.4 h. The hydrogen yield was individually dependent on Sin and HRT, while their interactive effect on the hydrogen yield was not significant. Throughout the experiments the hydrogen content fluctuated between 25.9% and 50.0%, but free of methane. Ethanol, acetate and butyrate were the main aqueous products and their yields all correlated well with Sin and HRT, indicating a mixed-type fermentation in this UASB reactor.  相似文献   

13.
We minimize the total entropy production of a process designed for dehydrogenation of propane. The process consists of 21 units, including a plug-flow reactor, a partial condenser, two tray distillation columns and a handful of heat exchangers and compressors. The units were modeled in a manner that made them relatively insensitive to changes in the molar flow rates, to make the optimization more flexible. The operating conditions, as well as to some degree the design of selected units, which minimized the total entropy production of the process, were found. The most important variables were the amount of recycled propane and propylene, conversion and selectivity in the reactor, as well as the number of tubes in the reactor. The optimal conversion, selectivity and recycle flows were results of a very clear trade-off among the entropy produced in the reactor, the partial condenser and the two distillation columns. Although several simplifying assumptions were made for computational reasons, this shows for the first time that it is also meaningful to use the entropy production as an objective function in chemical engineering process optimization studies.  相似文献   

14.
This paper presents a performance analysis of state of the art combined cycles power plants burning a number of syngas fuels. The first part of the analysis focuses on the effect of gas composition on the rated performance of the plant drawing two main conclusions. First, higher pressure ratio and lower firing temperature are found at turbine inlet. Second, the pressure at which fuel is supplied to the gas turbine plays an essential role in the power capacity of the engine. With respect to the steam cycle, no major effects are appreciated except for very low LHV fuels. In the second part of the work, the annual performance of the engine subjected to a typical load profile and real ambient and market conditions is studied. Differences in total incomes are appreciated depending on fuel composition and the concern about carbon emissions is highlighted.  相似文献   

15.
Char derived from cyanobacterial blooms (CDCB), by-product of fast pyrolysis of cyanobacterial blooms from Dianchi Lake (Yunnan Province, China) at a final pyrolysis temperature of 500 °C were used as feedstock material in this study. Steam gasification characteristics of CDCB were investigated in a fixed-bed reactor to evaluate the effect of particle size (below 0.15 mm, 0.15–0.3 mm, 0.3–0.45 mm, 0.45–0.9 mm, 0.9–3 mm) and solid residence time (3, 6, 9, 12, 15 min) on gas yield and composition, and experiments were carried out at bed temperature range of 600–850 °C, steam flow rate of 0.178 g/min. The results showed that solid residence time played an important role on steam gasification process, while particle size presented less effect on gasification process; proper particle size and longer residence time were favorable for dry gas yield and carbon conversion efficiency (CCE). At the same time, higher reaction temperature reduced influence of particle size on gasification process, and smaller particle size required less residence time for reaction completed. Maximum dry gas yield and CCE reached 1.84 Nm3 kg−1 and 98.82%, respectively, achieved at a temperature of 850 °C, flow rate of 0.178 g/min, solid residence time of 15 min and particle size range of 0.45–0.9 mm.  相似文献   

16.
Thermochemical gasification of biomass through the supercritical water gasification (SCWG) has high gasification efficiency at lower temperatures and can deal directly with wet biomass without drying. Besides, solid oxide fuel cells (SOFCs) appear to be an important technology in the future as they can operate at a high efficiency. Therefore, the combination of biomass gasification through supercritical water with SOFC represents one of the most potential applications for highly efficient utilization of biomass.  相似文献   

17.
18.
A novel multichannel reactor with a bifurcation inlet manifold, a rectangular outlet manifold, and sixteen parallel minichannels with commercial CuO/ZnO/Al2O3 catalyst for methanol steam reforming was numerically investigated in this paper. A three-dimensional numerical model was established to study the heat and mass transfer characteristics as well as the chemical reaction rates. The numerical model adopted the triple rate kinetic model of methanol steam reforming which can accurately calculate the consumption and generation of each species in the reactor. The effects of steam to carbon molar ratio, weight hourly space velocity, operating temperature and catalyst layer thickness on the methanol steam reforming performance were evaluated and discussed. The distributions of temperature, velocity, species concentration, and reaction rates in the reactor were obtained and analyzed to explain the mechanisms of different effects. It is suggested that the operating temperature of 548 K, steam to carbon ratio of 1.3, and weight hourly space velocity of 0.67 h−1 are recommended operating conditions for methanol steam reforming by the novel multichannel reactor with catalyst fully packed in the parallel minichannels.  相似文献   

19.
The heating method of SCWG reactor is critical to system construction, and almost all existing reactors rely on external heat sources. In this article, the thermodynamic equilibrium model is established to predict the distribution of gasification products from supercritical water gasification of coal. The transformation rule of gas components in the SCWG process of coal and oxidation process of gasification products is explored. Especially, the influence of key parameters such as feedstock concentration, gasification temperature and pressure on the hydrogen yield during the gasification and oxidation processes is also discussed. Based on the above research, the autothermal gasification system for hydrogen production integrated supercritical water gasification of coal and oxidation of gasification products is proposed. The flow matching of supercritical water, coal slurry, and oxygen and its effect on the autothermal hydrogen yield are discussed. By optimizing the flow rate of the reactants, 80% of the hydrogen production efficiency is achieved.  相似文献   

20.
In this study, thermodynamic analysis of solar-based hydrogen production via copper-chlorine (Cu–Cl) thermochemical water splitting cycle is presented. The integrated system utilizes air as the heat transfer fluid of a cavity-pressurized solar power tower to supply heat to the Cu–Cl cycle reactors and heat exchangers. To achieve continuous operation of the system, phase change material based on eutectic fluoride salt is used as the thermal energy storage medium. A heat recovery system is also proposed to use the potential waste heat of the Cu–Cl cycle to produce electricity and steam. The system components are investigated thoroughly and system hotspots, exergy destructions and overall system performance are evaluated. The effects of varying major input parameters on the overall system performance are also investigated. For the baseline, the integrated system produces 343.01 kg/h of hydrogen, 41.68 MW of electricity and 11.39 kg/s of steam. Overall system energy and exergy efficiencies are 45.07% and 49.04%, respectively. Using Genetic Algorithm (GA), an optimization is performed to evaluate the maximum amount of produced hydrogen. The optimization results show that by selecting appropriate input parameters, hydrogen production rate of 491.26 kg/h is achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号