首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
为了研究Fe-Mn-Al-C低密度钢脱氧合金化夹杂物的生成及机理,采用Si、Mn、Al进行脱氧合金化,通过场发射扫描电子显微镜结合夹杂物自动分析系统对Fe-Mn-Al-C低密度钢样品中的夹杂物进行观察。结果显示,Fe-Mn-Al-C低密度钢中夹杂物主要分为6类,即单颗粒Al2O3夹杂物、单颗粒MnS夹杂物、单颗粒AlN夹杂物、Al2O3-MnS复合夹杂物、AlN-MnS复合夹杂物、Al2O3-AlN-MnS复合夹杂物。单颗粒的Al2O3、MnS、AlN夹杂物的数量相对较多,夹杂物尺寸以小于5μm为主。热力学计算发现Al2O3在脱氧合金化时生成,AlN在固相分数为0.844时开始析出,而MnS在完全凝固后的固相钢中开始析出。不同夹杂物间的二维晶格错配度计算结果显示,MnS(110)/Al2O3(001)、AlN(001)/Al<...  相似文献   

2.
超低碳钢是一种重要的汽车用钢材料, 钢中通常添加钛元素, 使其形成析出物, 提高钢材的深冲性.然而钛元素作为一种脱氧能力较强的元素, 进入钢液中通常首先形成氧化物.为了减少含钛氧化物夹杂的生成, 基于"转炉-RH-连铸"的超低碳钢生产流程, 对RH精炼过程进行系统取样, 分析了铝脱氧剂加入后及合金化元素钛加入后的氧、氮气体含量变化及夹杂物特征变化, 并使用FactSage热力学计算软件对Fe-Al-Ti-O夹杂物稳定相图进行计算.研究结果显示, 含钛类氧化物夹杂通常以Al2O3类夹杂物作为形核质点, 对其形成包裹状夹杂物.若避免含Ti夹杂物的生成, 当钢中Ti质量分数为0.1%时, 钢中溶解Al质量分数应在0.01%以上.对含钛氧化物的生成及长大流程进行研究, 通过对Al2O3夹杂物及Ti2O3夹杂物粗化率的计算及附着功的比较可知, Ti2O3夹杂物在1600℃时的熟化生长速率较Al2O3较大且Ti2O3夹杂物与Al2O3夹杂物相比不容易相互碰撞融合并从钢液中去除.若提高精炼过程中的氧化物夹杂物去除率, 应严格控制含钛氧化物类夹杂物的生成.   相似文献   

3.
GCr15钢的生产流程为120 t BOF-LF-RH-CC工艺。BOF出钢加200 kg铝块进行强脱氧,同时LF过程控制Al含量至0.030%~0.045%,LF结束夹杂物主要为MgO·Al2O3,RH真空后MgO·Al2O3夹杂物被去除,钢水中夹杂物以钙铝酸盐为主,但是连铸浇铸过程MgO·Al2O3夹杂物又会重新生成。因为LF精炼过程Al-MgO和C-MgO反应的存在,高碳铝脱氧GCr15轴承钢LF精炼结束更容易获得MgO·Al2O3夹杂物,并促进中间包钢水MgO·Al2O3夹杂物重新生成。当BOF出钢仅加40 kg铝块进行预脱氧,LF结束钢水MgO·Al2O3夹杂物数量显著降低,同时中间包钢水中MgO·Al2O3夹杂物不再重新生成。此外,将低钛低铝硅铁由出钢过程改为LF过程加入,也可以有效控制钢水中MgO·Al2O3夹杂物数量。   相似文献   

4.
对超低碳IF钢钛合金化后的非金属夹杂物进行了分析,研究发现钛合金化后的夹杂物主要为Al2O3和Al?Ti?O夹杂物,没有发现纯TiOx夹杂物。钢中生成的Al?Ti?O复合夹杂物从形貌上均可分为七种类型,四种具有Al2O3外层,另外三种无Al2O3外层。钛合金化后,钢中瞬态生成了大量无Al2O3外层的Al?Ti?O夹杂物,随后夹杂物表面生成Al2O3外层,导致有Al2O3外层的Al?Ti?O夹杂物数量比例逐渐增加至78.0%。热力学计算结果表明,随着钢中钛含量的增加,夹杂物的转变顺序为固态Al2O3→液态Al?Ti?O→固态Ti2O3。确定了Al?Ti?O夹杂物的生成机理过程分为两步:精炼过程钛合金化后,当钢液局部区域的钛的质量分数高于0.42%时,[Ti]与钢液反应瞬态生成Al2O3?TiOx或TiOx;随着精炼过程中钛元素的混匀,含TiOx夹杂物被钢中[Al]还原,Al2O3?TiOx和TiOx夹杂物逐渐转变,在夹杂物表面生成Al2O3。   相似文献   

5.
为了探讨钢中细小夹杂物的形成机制,采用扫描电镜和能谱仪表征了钢中夹杂物的形貌、尺寸、成分及数量,理论计算了脱氧产物的生成优势区图,讨论了夹杂物长大的影响因素.钢中夹杂物的组成以MgO-Al2O3-TiOx为核心,表面包裹析出MnS,钢液中未发现单独的Al2O3和TiOx夹杂;夹杂物的形貌为近球形,平均尺寸为1μm左右,数量在1000 mm-2以上.镁含量较高的钢中含有少量以MgO-Al2O3和MgO为核心的夹杂物,不利于夹杂物的球形化,镁含量宜控制在50×10-6以下.镁的脱氧能力强,形核临界尺寸小、形核数量多以及钢液中镁、铝和钛复合脱氧的高熔点产物的特性有效地控制了钢中夹杂物的扩散与碰撞长大趋势.   相似文献   

6.
在航空发动机用轴承钢M50NiL的真空冶炼过程中使用不同脱氧剂进行脱氧,重点研究了不同脱氧剂类型对钢中夹杂物形貌、类型、尺寸及数量密度的影响。结果表明,未添加脱氧剂时,钢中夹杂物主要为Al2O3和铝镁尖晶石;使用Al-RE作为脱氧剂后,钢中夹杂物的主要类型为稀土夹杂物;而使用Al-RE-Si-Mn作为脱氧剂后,钢中夹杂物类型、尺寸及分布特征与Al-RE脱氧剂基本相当。稀土元素的加入能明显改善钢中夹杂物的类型及形貌,使主要夹杂物类型由带有棱角且形状不规则的富Al2O3型夹杂物转变为近球形的稀土夹杂物,同时降低了钢中夹杂物的最大尺寸,以及大尺寸的Al2O3夹杂物数量,但过量的稀土使得钢中出现了稀土夹杂物的团聚。  相似文献   

7.
Q235钢中夹杂物演变规律和生成机理分析   总被引:1,自引:0,他引:1  
 为了更好地控制Q235钢中非金属夹杂物的种类和数量,提高钢的冲击韧性,采用自动扫描电镜分析了Q235钢中非金属夹杂物在LF精炼、中间包和连铸坯中成分和形貌的演变规律。采用FactSage热力学软件对钢中各类夹杂物的生成机理进行了分析。研究发现,钢中非金属夹杂物的演变规律为均相的SiO2-MnO夹杂物→均相的SiO2-Al2O3-MnO-TiOx夹杂物→双相的Al2O3-SiO2-CaO包裹着MgO·Al2O3类夹杂物→多相的TiOx-SiO2-Al2O3-CaO-MnO-MnS夹杂物。样品冷却过程中均相的SiO2-MnO夹杂物发生相变析出纯SiO2导致在LF精炼初期钢中出现双相SiO2-MnO类夹杂物。加入的硅钙钡合金中铝含量较高,导致液态夹杂物在钢液中析出MgO·Al2O3,以及在LF出站钢样品中出现双相的Al2O3-SiO2-CaO包裹着MgO·Al2O3类夹杂物。含钛的夹杂物在连铸坯凝固冷却过程会析出纯的Ti3O5,并且钢中还会析出MnS析出相,因此连铸坯中存在多相的TiOx-SiO2-Al2O3-CaO-MnO-MnS夹杂物。  相似文献   

8.
刘南  成功  任英  张立峰 《工程科学学报》2022,44(12):2069-2080
大尺寸CaO?Al2O3类夹杂物容易引起轴承钢疲劳失效,大尺寸CaO?Al2O3类夹杂物的控制是生产高端GCr15轴承钢的关键因素之一。精炼过程中合金引入杂质元素、渣精炼和精炼过程中卷渣是铝脱氧轴承钢中大尺寸CaO?Al2O3类夹杂物的主要潜在来源。硅铁合金通常用来提高轴承钢的淬火和抗回火软化性。本文通过实验室实验、样品分析和热力学计算,研究了硅铁合金中金属钙元素对铝脱氧钢中夹杂物的影响。硅铁合金主要由深色的硅相和浅色的硅铁相组成,钙元素在硅相和硅铁相的界面处以金属化合物形式存在。研究发现,加入硅铁合金后,钢中总钙(T.Ca)含量增加,钢中的Al2O3和MgO·Al2O3夹杂物被改性为CaO?Al2O3类夹杂物,夹杂物尺寸随着夹杂物中CaO含量增加而减小,钢中并未生成大尺寸CaO?Al2O3类夹杂物。随着钢中T.Ca含量增加,夹杂物平均尺寸降低,钢中T.O含量增加,表明硅铁合金中金属钙元素不会直接引起钢中大尺寸CaO?Al2O3类夹杂物的生成。但是生成的小尺寸固相CaO?Al2O3类夹杂物在水口处粘附结瘤,结瘤物脱落后会成为钢中大尺寸CaO?Al2O3类夹杂物的来源之一。   相似文献   

9.
结合高温模拟实验和热力学分析,探讨了稀土对高强车轮钢中夹杂物类型及尺寸分布的影响,并与传统的钙处理钢进行了对比。研究结果表明,铝脱氧车轮钢经钙处理后夹杂物主要为Al2O3、MnS、(Mn, Ca)S和CaO-Al2O3以及Al2O3-(Mn, Ca)S和CaO-Al2O3-CaS包裹型复合夹杂物;与钙处理钢对比,车轮钢经稀土处理后,钢中Al2O3夹杂物数量减少,MnS和(Ca, Mn)S夹杂物消失,生成了近球形的Ce2O2S、Ce2O3夹杂,夹杂物尺寸显著减小;随稀土含量的增加[w(Ce)=0.0160%~0.0250%],不大于5μm的夹杂物数量占比由91.0%提升至99.8%,稀土细化夹杂物效果显著。热力学分析表明:在1600℃条件下,随着车轮钢中w(Ce)由0增加至0.0300...  相似文献   

10.
 大型夹杂物对钢材的加工性能、力学性能和耐腐蚀性能等产生十分有害的影响。用电解萃取法研究了钙处理钢中大型球状/棒状夹杂物的性质,通过对大型球状/棒状夹杂物形貌的扫描电镜观察和元素成分能谱分析,指出钢中的大型球状/棒状夹杂起源于呈团簇状的铝脱氧产物Al2O3。大量小颗粒Al2O3夹杂组成尺寸较大的夹杂团簇,在钢包内复杂流场作用下形成球状或棒状。钢液在钙处理过程中,变性充分的夹杂物形成了低熔点的铝酸钙,在钢液凝固后形成致密的球状夹杂物;变性不充分的夹杂外形仍然保留Al2O3夹杂颗粒形貌。钙处理使Al2O3夹杂变性所需的w([Ca])/w([Al])主要受钢液中硫质量分数影响。铝酸钙对钢液中的硫有较强的吸收溶解能力,在浇铸过程中,随着钢液温度下降,铝酸钙吸收的硫以CaS夹杂形式从基体中饱和析出。  相似文献   

11.
为进一步提升RH精炼的冶炼效率,更好与高拉速连铸相匹配,对RH冶炼IF钢过程中加Ti时机和纯循环时间对夹杂物的影响开展了试验研究。结果表明,钢液中T.O质量分数在加Al 5 min后小于0.003 0%;夹杂物的数密度在合金化4~5 min后具有最小值,随后增加纯循环时间,夹杂物的数密度无明显变化。在300 t RH工业生产实践中,Al-Ti间隔时间为2 min、纯循环时间为5 min和Al-Ti间隔3 min、纯循环4 min的处理工艺可以保证钢液中的夹杂物充分上浮去除,夹杂物的数密度为0.7~0.8个/mm2,可以实现RH的高效化精炼。在Al-Ti间隔时间大于1 min、纯循环时间大于3 min的操作条件下钢液中未检测到尺寸大于50μm的夹杂物。基于以上工艺优化,IF钢的RH真空处理时间已经降低至20 min。向钢液中加入Al后主要形成Al2O3夹杂物,加入钛铁合金化后钢液中会形成富[Ti]区域,[Ti]将Al2O3还原而生成Al-Ti氧化物。随着[Ti]在钢液内的扩散以及...  相似文献   

12.
重点考察了Ti合金化过程中影响Ti收得率的主要因素,并对比分析了Ti合金化前后夹杂物的物相变化及夹杂物的去除效果.控制氧活度a[O]<350×10-6,Al、Ti合金加入时间间隔大于3 min,可以保证Ti收得率>85%;当a[O]>350×10-6时,需控制Al、Ti合金加入时间间隔为5 min以上.相同a[O]和[Al]s情况下,延长Al、Ti加入时间间隔可以有效提高Ti收得率.RH处理过程中,钢包内当量直径>200μm的Al2O3夹杂物在5 min内基本可以上浮去除,但相同尺寸的A-Ti-O复合夹杂的去除时间要比Al2O3长1~2 min.Ti合金加入后,Al2O3夹杂物周围会形成Al-Ti-O的复合夹杂,这些夹杂物的形成降低Ti的收得率.   相似文献   

13.
为了研究不同锰合金原料对TRIP钢洁净度的影响及锰合金中非金属夹杂物的遗传特性,采用SEM-EDS分别检测了电解锰、金属锰和中碳锰铁中非金属夹杂物的类型、形貌和尺寸,并通过高温试验和热力学计算系统探讨了采用3种锰原料进行合金化后TRIP钢中非金属夹杂物特征.结果表明,电解锰中夹杂物主要为MnC、MnC-MnO和MnO-...  相似文献   

14.
王昆鹏  王郢  徐建飞  陈廷军  谢伟  姜敏 《钢铁》2022,57(6):42-49
 研究了轴承钢LF精炼和RH真空处理过程各类夹杂物的成分、种类和数量变化,并结合热力学模拟计算了夹杂物与钢液的界面参数,并对试验结果进行分析讨论。夹杂物分析结果表明,精炼25 min后,脱氧产物Al2O3消失,钢中夹杂物以纯尖晶石、含少量CaO的尖晶石、CaO·2Al2O3和CaO·Al2O3为主。继续精炼65 min至LF精炼结束,钢中夹杂物仍以纯尖晶石、含少量CaO的尖晶石、CaO·2Al2O3和CaO·Al2O3为主。RH真空处理25 min后,钢中夹杂物总数量较LF精炼结束降低75%,其中,纯尖晶石和含少量CaO的尖晶石去除率分别为99.5%和93.2%,CaO·2Al2O3去除率为67%。RH破空后钢中夹杂物以液态钙铝酸盐CaO·Al2O3和12CaO·7Al2O3为主。精炼过程尖晶石类夹杂物尺寸集中在10 μm以下,尺寸大于20 μm夹杂物主要为处于液相区的钙铝酸盐,这些钙铝酸盐在LF精炼前期就已经存在。与钢水接触角大于90°的固态夹杂物纯尖晶石、含少量CaO的尖晶石和CaO·2Al2O3在RH真空处理过程容易去除,与钢水接触角小于90°的液态夹杂物CaO·Al2O3和12CaO·7Al2O3不易去除。因此,将LF精炼结束的夹杂物控制为固态夹杂物有利于RH真空处理过程夹杂物的高效去除。热力学计算结果表明,当钢中w(T[O])为0.001 0%、w([Mg])大于0.000 18%时,脱氧产物Al2O3热力学上就不能稳定存在。铝脱氧、高碱度渣精炼条件下很难稳定地获得固态Al2O3夹杂物。为获得完全固态尖晶石或高熔点钙铝酸盐夹杂物,钢中w([Ca])需控制在0.000 1%以内。钢中w([Ca])大于0.000 2%,就具备生成液态夹杂物的热力学条件。  相似文献   

15.
研究的帘线钢的冶炼流程为150 tLD-RH-LF-软吹氩-CC工艺。通过LD出钢时加入Si-Mn脱氧,并在LF加入低碱度顶渣进行钢渣反应控制钢中非金属夹杂物的塑性。结果表明,RH-LF-中间包和铸坯阶段,钢中主要夹杂物分别为MnO-Al2O3-Si02(RH),Ca0-Al2O3-Si02(LF)和MnO-Al2O3-SiO2(中间包和铸坯),采用Si-Mn脱氧和SiC扩散脱氧,低碱度低Al2O3顶渣精炼,控制T[O]≤20×10-6,[A1]s≤0.0013%,可有效控制钢中夹杂物数量和尺寸,以及控制夹杂物中Al2O3含量并形成可塑性夹杂。  相似文献   

16.
分析了“BOF-RH-CC”和“BOF-LF-CC”两种工艺流程生产的ML08Al钢中非金属夹杂物类型、数量密度及总氧变化。结果表明,两种流程转炉脱氧合金化后钢中非金属夹杂物主要为Al2O3;采用“BOF-LF-CC”流程,LF精炼结束钢中部分非金属夹杂物由Al2O3转变为Al2O3·CaO和Al2O3·MgO;而采用“BOF-RH-CC”流程,RH真空后钢中非金属夹杂物仍然以Al2O3为主。转炉出钢脱氧合金化后,钢水中总氧含量27.8×10-6~31.5×10-6,经过LF精炼后,总氧含量为20.2×10-6~22.5×10-6,而经过RH处理后,总氧含量为14.7×10-6~15.3×10-6。LF精炼和RH真空处理对夹杂物数量的去除率分别为49.6%和80.9%。因此,“BOF-RH-CC”工艺流程生产的ML08Al钢水洁净度优于“BOF-LF-CC”工艺流程生产的钢水。  相似文献   

17.
The morphologies evolution of various types of inclusions in Ti-IF steel were observed by a special depth erosion method,and the formation and evolution process were discussed.The results showed that the main inclusions were FeO·xMnO before Al deoxidization and the ratio of integrated oxygen and free oxygen was in ranged of 0.3 to 0.4.In present study,the main effect factors on the morphologies of Al2O3 inclusions were [Al]/[O]Free(soluble aluminum divide free oxygen) and initial free oxygen;cluster Al2O3 was formed easily with high free oxygen([O]Free) and low[Al]/[O](blew 3 in present study).Otherwise,the dendritic Al2O3 was formed;coral-like Al2O3 was the mixture of the dendrite Al2O3 and spherical Al2O3.Some Al2O3·TiOx inclusions appeared because a high[Ti]concentration region existed around 70TiFe(containing 70 percent titanium) particles after 70TiFe addition.The maximum sizes of Al2O3 reached 800μm when 3 min aluminum was added;as the time past,the large size Al2O3 decreased significantly;the maximum size of Al2O3 was blew 100μm and 50μm in calming sample and tundish sample respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号