首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 234 毫秒
1.
采用浓H2SO4氧化聚醚醚酮(PEEK)得到磺化聚醚醚酮(SPEEK),以3,3'-二烯丙基双酚A (BBA)、双酚A双烯丙基醚(BBE)为活性稀释剂、SPEEK为改性剂、双马来酰亚胺(BMI)树脂为基体,浇注成型制备SPEEK/BBA-BBE-BMI复合材料,同时研究了SPEEK的改性效果及复合材料微观形貌与力学性能。结果表明:SPEEK改性效果较好,在FTIR中存在明显的磺酸基团特征峰,SEM和能谱分析表明,SPEEK微观形貌变化明显,硫元素含量较高;SPEEK/BBA-BBE-BMI复合材料的微观形貌显示,SPEEK在基体中呈现直径为2 μm左右的多孔状两相结构,且分散均匀,此多孔结构改善了复合材料的断裂形貌,由脆性断裂转变为韧性断裂,当断裂纹遇到SPEEK组分时受阻而出现不规则发散,此变化会赋予复合材料更加优异的性能。力学性能测试结果显示,当SPEEK含量为5wt%时,SPEEK/BBA-BBE-BMI复合材料的弯曲强度和冲击强度达到最佳,分别为147.93 MPa和15.74 kJ/mm2,分别比基体提高了49.47%和66.21%。  相似文献   

2.
采用溶胶-凝胶法(Sol-gel)分别制备Al2O3和SiO2,同时以KH560为架桥剂制得SiO2包覆Al2O3(KH560-Al2O3@SiO2)的增强体。以双马来酰亚胺树脂和酚醛环氧树脂(MBMI-EPN)为基体、4’4-二氨基二苯甲烷(DDM)为固化剂,采用原位聚合法制备了KH560-Al2O3@SiO2/MBMI-EPN复合材料;表征KH560-Al2O3@SiO2的微观结构及该增强体对复合材料性能的影响。结果表明:Al2O3@SiO2粒子微观结构清晰,核壳结构完整,内核为短纤维状Al2O3,外壳为无定形SiO2,二者通过化学键方式相连;Al2O3@SiO2表面成功接枝上KH560基团,粒子堆积现象减弱。KH560-Al2O3@SiO2/MBMI-EPN复合材料的微观形貌显示:KH560-Al2O3@SiO2在MBMI-EPN基体中形成多相结构、分散性较好、界面作用稳定且断面形貌呈鱼鳞状,并未发现Al2O3@SiO2粒子团聚体,整体结构完整。当KH560-Al2O3@SiO2含量为1.5wt%时,复合材料的弯曲强度与冲击强度分别为126 MPa和14.7 kJ/m;,比树脂基体分别提高了21.2%和27.8%;材料的热分解温度为392.3℃,比树脂基体提高了14.5℃,力学性能和耐热性得到明显改善。  相似文献   

3.
采用改进的Hummers法制备了氧化石墨烯(GO),并用马来酸酐(MAH)接枝改性制得MAH接枝氧化石墨烯(MAH-GO)。以二烯丙基双酚A (BBA)和双酚A双烯丙基醚(BBE)为活性稀释剂,4,4’-二氨基二苯甲烷型双马来酰亚胺(MBMI)为反应单体合成MBMI-BBA-BBE (MBAE)树脂基体;并以MAH-GO为增强体通过原位聚合制得MAH-GO/MBAE复合材料,表征MAH-GO的微观结构及其对复合材料力学性能的影响。结果表明:MAH成功接枝在GO表面,片层结构清晰,且表面出现褶皱,采用化学滴定法测定接枝率约为11.32%。MAH-GO/MBAE复合材料的微观形貌结果表明,当适量的MAH-GO加入体系中后,MAH-GO/MBAE复合材料断裂纹呈"树枝状"无规则发散,为典型的韧性断裂。当MAH-GO添加量为0.5wt%时,MAH-GO在基体中分散均匀,MAH-GO/MBAE复合材料的冲击强度和弯曲强度分别为15.88 kJ/m2和142.13 MPa,比基体树脂分别提高了67.68%和43.61%,力学性能得到明显改善。  相似文献   

4.
Fe/Al2O3复合材料的制备和性能   总被引:1,自引:0,他引:1  
用石墨埋烧方法制备Fe/Al2O3复合材料,对其力学性能和微观结构进行了分析。结果表明:Fe/Al2O3复合材料的弯曲强度与断裂韧性均随Al2O3含量的升高先升高后降低,当Al2O3含量(质量分数)为70%时,其弯曲强度与断裂韧性分别达到602.49 MPa和9.33 MPa·m1/2,其硬度随Al2O3含量先降低后升高。在烧结过程中在Fe颗粒周围形成一种成分为FeO与FeAl2O4的壳体,在壳体与Fe颗粒之间存在微裂纹缺陷。壳体的形成和壳体与金属颗粒间的微裂纹钝化了外部应力,从而提高了复合材料的韧性。  相似文献   

5.
采用叠层模压法制备了纳米Al2O3-碳纤维织物多尺度增强聚酰胺基(nano Al2O3-CFF/PA6)复合材料层压板。借助场发射扫描电子显微镜(FESEM)、同步热分析仪(TGA/DSC)和FTIR,研究了模压温度、压力和纳米Al2O3加入量等因素对nano Al2O3-CFF/PA6复合材料力学性能的影响。研究表明:在模压温度为230℃、模压压力为3 MPa和保压时间为15 min时,CFF/PA6层压板的弯曲强度为250.3 MPa,层间剪切强度为87.6 MPa,平行层厚方向的冲击强度为41.2 MPa,垂直层厚方向为9.6 MPa。当基体中的Al2O3含量达到6wt%时,nano Al2O3-CFF/PA6层压板的弯曲强度为387.6 MPa,层间剪切强度为35.7 MPa,平行和垂直层厚方向的冲击强度分别为80.3 MPa和25.6 MPa。  相似文献   

6.
周宏  张玉霞  范勇  陈昊 《复合材料学报》2014,31(5):1142-1147
采用水热法制备片状纳米Al2O3,经过偶联剂改性后与环氧树脂复合,通过溶液混合法制备了不同填充量的片状纳米Al2O3/环氧树脂复合材料,研究了片状纳米Al2O3用量对片状纳米Al2O3/环氧树脂复合材料介电性能和热性能的影响,利用SEM对复合材料的断口形貌进行了表征。结果表明: 片状纳米Al2O3在环氧树脂基体中分散良好;随着片状纳米Al2O3填充量的增加,复合材料的起始热分解温度升高、介电强度增大,当片状纳米Al2O3的填充量为7wt%时,复合材料的介电强度为 29.58 kV/mm,比纯环氧树脂的介电强度提高了30%;复合材料的介电常数(3.8~4.5)和介电损耗(0.015)比纯环氧树脂稍有增大,但仍维持在较好的介电性能范围内。  相似文献   

7.
为更好地实现口腔修复体的美学修复效果,采用掺杂不同含量Fe2O3(0.01wt%~0.09wt%)和Al2O3(0.1wt%)的3 mol% Y2O3稳定的ZrO2(3Y-TZP)粉体为原料,经过铺粉、压制、烧结等工艺制得色度渐变的多层陶瓷结构Al2O3-Fe2O3/3Y-TZP梯度复合陶瓷。对该梯度复合陶瓷的色度分布、烧结性能和力学性能进行检测,同时研究了Fe2O3和Al2O3的掺杂对3Y-TZP陶瓷组织和性能的影响。结果表明,制得的Al2O3-Fe2O3/3Y-TZP梯度复合陶瓷色度由红黄向白色沿成分变化方向呈梯度变化,与天然牙齿色度分布规律一致;力学性能呈梯度变化并从无色端到有色端逐渐降低,但仍满足牙科使用需求(≥ 800 MPa);在无色瓷层中掺杂微量Al2O3(0.1wt%)可以改善Al2O3-Fe2O3/3Y-TZP梯度复合陶瓷的烧结性能,避免在预烧结过程中发生开裂。微量Fe2O3和Al2O3的掺杂会促进其在烧结过程中的致密化及晶粒长大;微量Fe2O3(0.01wt%)和Al2O3(0.1wt%)的掺杂有助于提高3Y-TZP陶瓷的挠曲强度,然而随着Fe2O3掺杂量的继续增多(≤ 0.09wt%)挠曲强度降低。   相似文献   

8.
本研究采用片状Al2O3为二维增强体,实现了建筑陶瓷板材的力学强化。探究了片状Al2O3粒径与掺量对建筑陶瓷致密度、力学性能、物相组成与微观结构的影响规律,并阐释了片状Al2O3的强韧化机制。研究结果表明:随着片状Al2O3掺量的增加,建筑陶瓷的吸水率与显气孔率逐渐增加、致密度逐渐降低,但片状Al2O3粒径的减小有利于减弱其对建筑陶瓷致密化的抑制作用,使得片状Al2O3(粒径为5μm)的强韧化效果明显优于片状Al2O3(粒径为10μm);掺加5%(质量分数)片状Al2O3(5μm)制得的建筑陶瓷弯曲强度与断裂功可达(71.6±5.5) MPa和(296.2±45.3) J/m2,分别较空白试样(片状Al2  相似文献   

9.
作为20世纪90年代兴起的一类连续陶瓷纤维增强陶瓷基复合材料,连续氧化铝纤维增韧氧化铝(Al2O3f/Al2O3)复合材料已经发展为与Cf/SiC、SiCf/SiC等非氧化物复合材料并列的陶瓷基复合材料。以多孔基体实现基体裂纹偏转成为Al2O3f/Al2O3复合材料主要的增韧设计方法,形成的多孔Al2O3f/Al2O3复合材料具有优异的抗氧化性能和高温力学性能,可在高温富氧、富含水汽的中等载荷工况中长时服役,是未来重要的热结构材料。经过近30年的发展,多孔Al2O3f/Al2O3复合材料已被应用于航空发动机、燃气轮机等热端部件。本文综述了多孔Al2O3f...  相似文献   

10.
为研究增韧双马来酰亚胺方法及其对性能的影响,首先利用超临界乙醇处理纳米SiO2(SCE-SiO2),改善其表面活性;然后以4,4’-二氨基二苯甲烷双马来酰亚胺(MBMI)、3,3’-二烯丙基双酚A(BBA)、双酚A双烯丙基醚(BBE)为原料合成了MBMI-BBA-BBE(MBAE)复合材料基体,并利用原位聚合法和溶胶-凝胶法将SCESiO2和聚醚砜(PES)加入MBAE基体中制备了SCE-SiO2/PES-MBAE多相复合材料;最后采用SEM观察了SCESiO2/PES-MBAE复合材料断面形貌。SCE-SiO2的FTIR分析结果表明:在3 434cm-1处的Si—OH的吸收峰消失,出现了3 310cm-1处的乙醇分子间—OH的吸收峰、2 984cm-1处的甲基和亚甲基的吸收峰,证明纳米粒子可能以某种形式结合了乙醇分子,改善了表面性能。PES以"蜂窝"状分散相的形式存在于基体中,断裂方式由脆性断裂向韧性断裂转变,SCE-SiO2和PES对材料均有增韧作用,PES的增韧效果更明显,二者之间具有协同作用,当SCE-SiO2含量为2wt%、PES含量为4wt%时,多相复合材料的冲击强度和弯曲强度分别为15.02kJ/m2和130.47MPa,较MBAE树脂分别提高了57.3%和35.8%。介电性能测试表明:SCE-SiO2和PES的引入均会导致SCE-SiO2/PES-MBAE复合材料的介电常数和损耗略有上升,但二者之间的协同作用可以抑制PES组分所带来的负面影响。  相似文献   

11.
以双酚A型环氧树脂(E51)和双酚A型氰酸酯(BCE)为原料,研究E51改性BCE共固化反应机制。同时,以E51-BCE为基体树脂,溶胶-凝胶法(Sol-Gel)自制Al2O3为增强体,制备Al2O3改性E51-BCE (Al2O3/E51-BCE)复合材料。通过非等温DSC确定了E51-BCE体系的固化工艺及固化反应动力学,并根据Kissinger法和Ozawa法求得体系的表观活化能分别为66.13 kJ/mol和69.46 kJ/mol。利用红外光谱跟踪固化体系在起始固化温度为160℃、 180℃时的反应历程,结果表明:起始固化温度在160℃时,以E51与BCE直接反应为主;起始固化温度在180℃时, BCE反应活性提高,以BCE自聚反应为主,生成三嗪环的速率加快,少量的BCE直接与E51反应生成恶唑啉结构。对Sol-Gel法自制Al2O3进行FTIR和TEM表征,结果表明:Al2O3为短纤维状的晶体,表面含有少量羟基。SEM结果显示:Al2O3为分散相,与基体间界面模糊, Al2O3/E51-BCE复合材料的脆断面裂纹不规则,为典型的韧性断裂;当Al2O3掺杂量为3wt%时, Al2O3在基体中分散均匀, Al2O3/E51-BCE复合材料的冲击强度和弯曲模量分别为24.2 kJ/m2和2.54 GPa,比基体树脂的冲击强度和弯曲模量分别提高53.65%和22.12%,力学性能得到明显改善。  相似文献   

12.
TiB2–Al2O3 composites with Ni–Mo as sintering aid have been fabricated by a hot-press technique at a lower temperature of 1530 °C for 1 h, and the mechanical properties and microstructure were investigated. The microstructure consists of dispersed Al2O3 particles in a fine-grained TiB2 matrix. The addition of Al2O3 increases the fracture toughness up to 6.02 MPa m1/2 at an amount of 40 vol.% Al2O3 and the flexural strength up to 913.86 MPa at an amount of 10 vol.% Al2O3. The improved flexural strength of the composites is a result of higher density than that of monolithic TiB2. The increase of fracture toughness is a result of crack bridging by the metal grains on the boundaries, and crack deflection by weak grain boundaries due to the bad wetting characters between Ni–Mo and Al2O3.  相似文献   

13.
利用超临界乙醇修饰纳米Al2O3,得SCE-Al2O3,使其表面沉积活性基团;以4,4′-二氨基二苯甲烷双马来酰亚胺(BMI)为基体、3,3′-二烯丙基双酚A(BBA)和双酚A双烯丙基醚(BBE)为活性稀释剂、聚醚砜(PES)为增韧剂、SCE-Al2O3为改性剂,通过原位聚合法合成了SCE-Al2O3/PES-BMI-BBA-BBE复合材料。采用SEM和FTIR观察分析了SCE-Al2O3纳米粒子和PES的增韧机制。结果表明:SCE-Al2O3纳米粒子处理时间不宜过长,5min为宜;FTIR显示在3 457cm-1附近的—OH吸收峰增强,说明粒子表面沉积了活性基团—OH;PES与BMI-BBA-BBE呈现两相结构,PES树脂以"蜂窝"状均匀分散在聚合物基体BMI-BBA-BBE中,PES用量增加会使其粒子尺寸增大,适宜用量为5wt%。SCE-Al2O3/PES-BMI-BBA-BBE复合材料的耐热性能测试结果显示:PES树脂会使材料的热分解温度降低,但SCE-Al2O3会提高材料的耐热性能,4wt%SCE-Al2O3/PES-BMI-BBABBE的热分解温度为444.41℃,较基体树脂提高了20.52℃,600℃时残重率为47.64%,提高了7.09%。  相似文献   

14.
以CaO-B2O3-SiO2(CBS)玻璃粉体和Al2O3陶瓷粉体为原料,通过在CBS与Al2O3的质量比固定为50:50的玻璃-陶瓷复合材料中添加适量的Bi2O3作为烧结助熔剂,探讨了Bi2O3助熔剂对CBS/Al2O3复合材料的烧结性能、介电性能、抗弯强度和热膨胀系数的影响规律.研究表明:Bi2O3助熔剂能通过降低CBS玻璃的转变温度和黏度促进CBS/Al2O3复合材料的致密化进程,于880 ℃下烧结即能获得结构较致密、气孔较少的CBS/Al2O3复合材料.然而,过量添加Bi2O3将使玻璃的黏度过低,从而恶化CBS/Al2O3复合材料的烧结性能、介电性能及抗弯强度.当Bi2O3的添加量为CBS/Al2O3复合材料的1.5wt%时,于880 ℃下烧结即能获得最为致密的CBS/Al2O3复合材料,密度为2.82 g·cm-3,这一材料具有良好的介电性能(介电常数为7.21,介电损耗为1.06×10-3),抗弯强度为190.34 MPa,0~300 ℃的热膨胀系数为3.52×10-6 K-1.  相似文献   

15.
向SiO2基体粉料中添加Al2O3纤维,采用热压注法制备Al2O3/SiO2陶瓷型芯。分析Al2O3纤维含量对陶瓷型芯性能的影响。研究结果表明:Al2O3纤维含量对Al2O3/SiO2陶瓷型芯的线收缩率、体积密度和抗弯强度均有较大的影响。当Al2O3纤维含量大于1wt%时,Al2O3/SiO2陶瓷型芯的线收缩率大幅度降低,稳定在0.335%左右,体积密度随之降低,稳定在1.790 g · cm-3左右;当Al2O3纤维含量为1wt%时,陶瓷型芯抗弯强度达最大值20.48 MPa。分析了Al2O3纤维对Al2O3/SiO2陶瓷型芯烧结收缩的阻滞作用机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号