共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
3.
针对传统的纸张表面缺陷检测算法容易受复杂背景干扰的问题,提出一种机器视觉自动检测纸张间相对均匀的表面缺陷检测方法。主要分析了纸张表面各个环节中可能会出现的缺陷识别分类与缺陷类型等算法。根据目前的机器视觉自动检测技术,对已有的表面识别算法进行了分析。将通道注意力信息与空间注意力机制进行融合,设计出新的注意力机制模型,对纸张表面缺陷进行分类,此方法提升了模型算法的缺陷识别准确率,在纸张表面缺陷检测上,用过分析和总结机器视觉自动检测在纸张表面缺陷的应用,提高了纸张检测的准确率和效率,所述方法具有较强工程可行性和推广价值。 相似文献
4.
<正>一、引言在印刷过程中,由于印刷工艺及机械精度等原因,印刷品往往会出现色差、套印不准现象,还会出现一些飞墨、墨点、刮擦以及包装品凹陷、残缺之类的外观缺陷,从而导致印刷次品的产生。传统的印刷品表面缺陷检测一般有主观目测法、密度检测法和色度测量法三种测量方法。主观目测法主要通过肉眼直接将印刷品和标准原稿进行比对,同时还借用其他辅助设备来寻 相似文献
5.
针对皮革表面缺陷人工检测效率低、准确率低等问题,基于机器视觉和深度学习算法等构建了一种皮革表面缺陷检测系统.对该系统的主要框架及核心功能进行分析,以一般皮革表面光学检测系统为对象进行检测精度与检测效率对比.结果表明,基于机器视觉+深度学习的皮革表面缺陷检测系统检测精度更高,在应用初期的检测效率与一般检测系统较为接近,但随着应用时间的增长,系统检测效率优势也会逐渐显现. 相似文献
6.
7.
8.
9.
10.
11.
介绍了一套在高档纸生产线上应用的纸张表面缺陷(纸病)检测系统——Fopesigh-PDI,该系统能够在线检测边损、孔洞、白斑、黑点、油斑、褶皱等纸张缺陷。介绍了该系统的功能和特点,探讨其在提高纸张生产效率和质量控制中的重要作用。 相似文献
12.
13.
纺织工业是我国制造业出口的重要组成部分。布匹的质量控制在纺织工业中尤为重要,而布匹瑕疵是影响布匹质量控制的重要因素之一。在中小企业中,布匹瑕疵识别主要依靠人工流水线作业,存在着人工成本高、人眼识别准确度低等问题。因此,一个有效的布匹瑕疵检验系统是十分必要的,布匹瑕疵分类算法是保证疵点判决效率的核心。基于布匹生产企业存在的问题,有针对性地研究了机器学习与计算机视觉的布匹瑕疵识别算法的基本原理,介绍了各类布匹瑕疵识别中的检测与分类算法,将最近发展迅速的机器学习的理论研究引入布匹瑕疵识别中,对涉及机器学习的模式识别算法进行了介绍。 相似文献
14.
为提高筒子纱检测过程的自动化程度,设计了一种基于机器视觉的筒子纱缺陷在线检测系统。该系统由2个工业相机、条形LED光源、对照式光电开关和计算机组成。首先,相机与同步光源分时采集筒子纱顶面和侧面过曝模式及正常模式图像。然后通过对顶面过曝图像自适应分割来定位筒子纱中心。其次,通过极坐标变换展开顶面正常图像。最后,在顶面展开图中,分别利用垂直方向边缘分布的投影特征、纹理及强度一致性、局部方向直方图纹理识别菊花芯、多源纱和网纱缺陷;在筒子纱侧面图中,通过投影法快速确定边界位置,并通过轮廓拟合程度识别多层台缺陷。结果表明,该系统可实时识别多层台、网纱、菊花芯、多源纱等筒子纱缺陷,具有较好的检测效果。 相似文献
15.
16.
17.
[目的]解决传统的谷糙分离机存在的人工检测精度差的问题,提高生产效率。[方法]提出了一种基于机器视觉的图像检测方法,通过不同图像算法的多级式递进融合,实现对谷糙的特征识别与分离。对采集到的图像进行ROI区域选定,并利用Retinex算法进行图像增强;使用Otsu算法对图像进行分割,再利用中值滤波与形态学相结合去除图像噪声;采用改进的Canny算法对二值图像进行边缘特征检测,结合Hough变换提取谷糙图像轮廓的位置信息;最后应用卡尔曼滤波对位置信息进行状态估计,得到分离位置最佳预测值的同时,减小位置偏移误差。[结果]系统的检测平均误差为3.14 mm,相比较滤波前减少1.82 mm,滤波误差平均标准差为0.8 mm。[结论]该方法能够有效检测谷糙特征信息并提高分离精度。 相似文献
18.
为实现玻璃纤维管纱毛羽检测的自动化,设计了基于机器视觉的玻璃纤维管纱毛羽检测系统。使用光源、相机、电机等搭建图像获取平台得到毛羽图像;利用Blob连通域分析法进行毛羽区域提取,计算毛羽轮廓矩特征与毛羽区域特征,并结合支持向量机实现毛羽分类;根据毛羽分类结果以及前后2帧图像中毛羽位置坐标差值,对不同类型的毛羽数量进行统计;通过毛羽的最小外接矩形,得到每帧图像中的毛羽长度数据,并取每个毛羽长度数据的最大值作为相应的毛羽长度。结果表明:该系统能够代替人工完成管纱毛羽的有效检测,且单个管纱的检测耗时在10 s以内,能够满足实际的工业需要。 相似文献