首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The enhancement ofT 1 precipitation in Al-Li-Cu alloys by plastic deformation prior to aging (that is, cold work) and the subsequent increase in alloy strength is investigated. The increased understanding of the role of matrix dislocations in the nucleation and growth ofT 1 plates, discussed in the previous paper,[1] permits a detailed study of the phenomenon. In this paper, the effect of different levels of plastic strain on theT 1 particle distributions as a function of aging time at 190 °C is quantified, and the subsequent influence on tensile properties is thereby described. The effect of plastic deformation is shown to decrease theT 1 plate length and thickness, increase the number density by almost two orders of magnitude, increase the yield strength by 100 MPa, while simultaneously reaching peak strength in 20 pct of the time required without plastic deformation. Formerly Graduate Student, Department of Materials Science, University of Virginia,  相似文献   

2.
研究了室温拉伸时应变速率对高氮奥氏体不锈钢18%Cr-18%Mn-0.65%N力学性能和塑性流变行为的影响。结果表明,随应变速率的升高,试验钢的屈服强度Rp0.2升高,而抗拉强度Rm及塑性略有降低;在各应变速率下,试验钢的塑性流变行为均可以用Ludwigson模型进行描述;应变速率的升高对试验钢流变方程参数的影响如下:1)强度系数K1、应变硬化指数n1和n2减小,试验钢的加工硬化能力降低;2)真实屈服强度TYS降低;3)瞬变应变εL减小,表明升高应变速率能够促进位错多系滑移和交滑移。  相似文献   

3.
采用Hopkinson拉杆试验系统对800 MPa级冷轧双相钢(DP800)进行动态拉伸试验,动态拉伸选择应变速率为500、1000和2250 s-1.通过比较试验结果得出:双相钢的塑性延伸强度Rp0.2和抗拉强度Rm与应变速率的关系呈指数形式增加;DP800在高应变速率塑性变形会产生绝热温升效应,计算可得DP800在应变速率为2250 s-1时拉伸变形产生的绝热温升为89℃.基于J-C(Johnson-Cook)模型和Z-A(Zerilli-Armstrong)模型,对DP800的本构模型进行了研究,并对J-C模型应变速率效应多项式进行二次化修正,修正后的J-C模型相较于J-C模型对DP800在不同应变速率下的平均可决系数从0.9228提高到0.9886.   相似文献   

4.
This work identifies the influence of strain rate, temperature, plastic strain, and microstructure on the strain rate sensitivity of automotive sheet steel grades in crash conditions. The strain rate sensitivity m has been determined by means of dynamic tensile tests in the strain rate range 10?3–200 s?1 and in the temperature range 233–373 K. The dynamic flow curves have been tested by means of servohydraulic tensile testing. The strain rate sensitivity decreases with increasing plastic strain due to a gradual exhausting of work hardening potential combined with adiabatic softening effects. The strain rate sensitivity is improved with decreasing temperature and increasing strain rate, according to the thermally activated deformation mechanism. The m‐value is reduced with increasing strength level, this decrease being most pronounced for steels with a yield strength below 400 MPa. Solid solution alloying with manganese, silicon, and especially phosphorous elements lowers the strain rate sensitivity significantly. Second phase hardening with bainite and martensite as the second constituent in a ferritic matrix reduces the strain rate sensitivity of automotive sheet steels. A statistical modeling is proposed to correlate the m‐value with the corresponding quasistatic tensile flow stress.  相似文献   

5.
The yielding behavior of interstitial-free (IF) steel and 70/30 brass prestrained in plane strain tension and subsequently strained in uniaxial tension has been investigated experimentally. Upon reloading in uniaxial tension, brass exhibited a negative transient (decrease in flow stress) and steel exhibited a positive transient (increase in flow stress). When the yield stress is defined by the offset method, the positive transient is difficult to model using conventional yield theories as elastic deformation is thought to occur outside the original yield or loading surface. In this work, the yield point was defined using the axial strainvs transverse strain curve as measured with biaxial resistance strain gages. The curve has an initially linear elastic portion; the slope then gradually changes until the linear plastic slope is reached. The intersection of the elastic and plastic slopes is defined as the yield point. Using this alternate definition, the yielding behavior of the prestrained metals was investigated. The yield stress for both prestrained brass and steel was found to be lower than the expected monotonic stress. Compared to previous research based on a traditional definition of yield point, this result is unexpected in prestrained steel and shows that yielding does occur inside the loading surface. The positive transient may, therefore, be modeled using conventional yield theories provided that the yield surface is defined using this alternate technique.  相似文献   

6.
The application of strain-based design for pipelines requires comprehensive understanding of the postyield mechanical behavior of materials. In this article, the impact of plastic prestrain on near-neutral pH stress corrosion cracking (SCC) susceptibility of welded X70 steel was investigated with a slow strain rate tensile (SSRT) test. Generally, plastic prestrain reduces the SCC resistance in various welded zones. The SCC susceptibility of the test materials can be put in the following order: heat-affected zone (HAZ) > weld metal (WM) > base metal (BM). Fractographic analysis indicates that there are two cracking modes, mode I and mode II, during SSRT tests. Mode I cracks propagate along the direction perpendicular to the maximum tensile stress, and mode II cracks lie in planes roughly parallel to the plane where the maximum shear exists. The SCC of the BM is governed by mode I cracking and fracture of the HAZ, and the WM is dominated by mode II cracking. Damage analysis shows that the detrimental impact of plastic prestrain on the residual SCC resistance cannot be evaluated with the linear superposition model. A plastic prestrain sensitivity, a material constant independent of plastic prestrain, is proposed to characterize the susceptibility of SCC resistance to plastic prestrain, and it increases with the SCC susceptibility of the steels. The enhanced SCC susceptibility caused by plastic prestrain may be related to an increase in yield strength. The correlation of the ratio of the reduction in area in NS4 solution to that in air (RA SCC/RA air) with the yield strength is microstructure dependent.  相似文献   

7.
The deformation behavior of TiC particulate-reinforced aluminum composites (Al-TiC p ) was investigated in this work using pure aluminum as the reference matrix material. Uniaxial compression tests were carried out at 293 and 623 K and at two strain rates (3.7×10−4 and 3.7×10−3 s−1). Yield strengths of up to 127 MPa were found in composites containing 10 vol pct TiC particulates, which were almost 4 times the yield strength of pure Al. In addition, at 623 K, relatively small reductions in yield strength were found, suggesting that this property was rather insensitive to temperature for the temperatures investigated in this work. Nevertheless, at 623 K, increasing the rate of straining from 3.7×10−4 s−1 to 3.7×10−3 s−1 lowered the yield strength, particularly in 10 vol pct TiC p -Al composites. Two stages of work hardening were identified in pure Al and a 10 vol pct TiC p composite during plastic flow through the modified version of the Hollomon equation (σ = n ± Δ). In particular, the work-hardening exponents found in pure Al shifted from high to low values as the extent of plastic strain was increased while the opposite was true for the 10 vol pct TiC p composite. Finally, at 623 K, dynamic recovery mechanisms became dominant at plastic strain levels >0.2 in 10 vol pct TiC p -Al composites, with the effect being minor at room temperature.  相似文献   

8.
The tensile behavior, serrated flow, and dynamic strain aging of Fe-(20 to 24)Mn-(0.4 to 0.6)C twinning-induced plasticity (TWIP) steel have been investigated. A mathematical approach to analyze the DSA and PLC band parameters has been developed. For Fe-(20 to 24)Mn-(0.4 to 0.6)C TWIP steel with a theoretical ordering index (TOI) between 0.1 and 0.3, DSA can occur at the very beginning of plastic deformation and provide serrations during work hardening, while for TOI less than 0.1 the occurrence of DSA is delayed and twinning-dominant work hardening remains relatively smooth. The critical strain for the onset of DSA and PLC bands in Fe-Mn-C TWIP steels decreases as C content increases, while the numbers of serrations and bands increase. As Mn content increases, the critical strain for DSA and PLC band varies irregularly, but the numbers of serrations and bands increase. For Fe-(20 to 24)Mn-(0.4 to 0.6)C TWIP steel with grain size of about 10 to 20 μm, the twinning-induced work hardening rate is about 2.5 to 3.0 GPa, while the DSA-dominant hardening rate is about 2.0 GPa on average. With increasing engineering strain from 0.01 to 0.55 at an applied strain rate of 0.001s?1, the cycle time for PLC bands in Fe-Mn-C TWIP steel increases from 6.5 to 162 seconds, while the band velocity decreases from 4.5 to 0.5 mm s?1, and the band strain increases from 0.005 to 0.08. Increasing applied strain rate leads to a linear increase of band velocity despite composition differences. In addition, the influence of the Mn and C content on the tensile properties of Fe-Mn-C TWIP steel has been also studied. As C content increases, the yield strength and tensile strength of Fe-Mn-C TWIP steel increase, but the total elongation variation against C content is dependent on Mn content. As Mn content increases, the yield strength and tensile strength decrease, while the total elongation increases, despite C content. Taking both tensile properties and serrated flow behavior into consideration, Fe-22Mn-0.4C TWIP steel shows excellent mechanical performance with a high product of tensile strength and total elongation and a slightly serrated stress–strain response. To suppress the negative effect of DSA in Fe-Mn-C TWIP steels on the stability of tensile behavior, a TOI lower than 0.1 is strongly suggested.  相似文献   

9.
Cold‐formed metal products are increasingly serving as high duty machine parts. Designers and users need to know their properties as accurately as possible. One such product property is the new yield strength, which can be approximated by the final flow stress of the workpiece material during forming. Vickers hardness measurements provide an easy and inexpensive method of evaluating the new local yield stress in cold‐formed workpieces. The well‐known available models given in literature to convert the measured hardness number into the corresponding yield stress have an error of up to 25 %. This is basically due to the facts that cold formed material experiences large plastic strains in the main forming stage, the hardening behaviour is anisotropic and, moreover, the material properties are inhomogeneous especially at the workpiece surface. The purpose of this study is to improve the accuracy of the well‐known available correlation models between Vickers hardness measurements and yield stress. This is achieved by utilizing finite element simulations of the indentation process. The models currently incorporate only the isotropic strain‐hardening behaviour of the work material. The new suggested model decreases the theoretical conversion error to less than 10 %. The improved model has been verified by experiments. The difficulty in verifying the models is realizing an experiment with a precisely known high plastic strain. In this study, the forward extrusion process was utilized for this purpose. In the forward extrusion process there is one location in the workpiece where the plastic equivalent strain and hence the yield stress is exactly known: the axis of the extrudate. By this method it is possible to obtain strain‐hardening states up to an equivalent plastic strain of 1.6 (!). Hence, making hardness measurements at the axis of extruded workpieces, it was possible to verify the improved relationship up to realistic strain values. The results have shown that the new relationship supplies conversions with a drastically reduced error as compared to the classical relations.  相似文献   

10.
The plastic yield behavior of strip annealed 70/30 brass sheet has been investigated using several experimental techniques. Proportional path, stress-strain relations were measured in two strain states using a recently devised plane-strain test and a standard sheet tensile test. Based on these data, 70/30 brass exhibits a dramatic departure from Hill's plasticity models. Particularly notable is the lower work-hardening rate in plane strain. A second series of tests was carried out by deforming first in plane-strain tension and subsequently in uniaxial tension. The relative orientation of the principal strain directions in the two strain paths strongly affected the transient yielding behavior, but the original work-hardening pattern and plastic anisotropy were approached after an additional effective strain of ∼0.04. These observations are consistent with a two yield-surface model;i.e., one an underlying, proportional path yield surface and one an instantaneous, transient yield surface.  相似文献   

11.
The effects of changes in strain path on plastic behaviour in sheets of an interstitial-free steel with two widely different grain sizes were investigated. The sheets were prestrained in rolling and, apart from supplementary tests, they were tested in uniaxial tension at 90° to the rolling direction. The results support the following conclusions. The magnitude of the increase in reloading yield stress and amplitude of the subsequent reduction in work hardening depend on the strength of dislocation walls generated in the prestrain rather than the grain size. The walls are more effective barriers to dislocation glide in freshly activated slip systems than to glide in the original slip systems operating in the prestrain. The primary cause of the subsequent reduction in hardening rate is disruption and partial dissolution of the original dislocation substructure. The final recovery in hardening rate is caused by generation of a new substructure compatible with the new deformation mode.  相似文献   

12.
A yield phenomenon was firstly reported in an extruded Mg-6.8Y-2.5Cu alloy and the corresponding microstructure was also investigated in this work,The cast alloy is mainly composed of α-Mg,18R long period stacking order(LPSO) phase,eutectic phase(Mg20Cu4Y1),and Mg2Cu phase.The 18R LPSO phase at the dendritic grain boundary transforms into the 14H LPSO phase in the grain interior during homogenization.After extrusion,the grain size of the homogenized al...  相似文献   

13.
The effects of volume fraction of particles, stress state, and interface strength on the yield strength, flow localization, plastic constraint, and damage development in Nb/Cr2Nb in situ composites were investigated by the finite-element method (FEM). The microstructure of the in situ composite was represented in terms of a unit rectangular or square cell containing Cr2Nb particles embedded within a solid-solution-alloy matrix. The hard particles were considered to be elastic and isotropic, while the matrix was elastic-plastic, obeying the Ramberg-Osgood constitutive relation. The FEM model was utilized to compute the composite strength, local hydrostatic stress, and plastic strain distributions as functions of volume fraction of particles, stress state, and interface strength. The results were used to elucidate the influence of volume fracture of particles, stress state, and interface property on the development of plastic constraint and damage in Nb/Cr2Nb composites.  相似文献   

14.
Powder metallurgy (PM) allows the fabrication of complex net-shaped components. Accurate design specification of these components requires precise prediction of the compact’s response to sintering process parameters. Nonuniform sintering responses such as strain gradients can result in process failures such as permanent deformation and cracks. To avoid these types of process failures without costly trial-and-error design, the most important response to predict is the compact’s strength as it evolves during the sintering process. A device and method have been developed to characterize the in situ strength evolution as a function of various sintering process parameters. The specific strength parameter investigated and modeled in this article was transverse rupture. This strength was precisely determined for 90Cu-10Sn bronze in response to various combinations of temperature, heating rate, and heating time. The consequence of this work is to identify thermal cycles that minimize distortion and otherwise improve dimensional tolerances.  相似文献   

15.
The effect of thermomechanical processing on fatigue crack propagation (FCP) is examined for 70/30 brass and 305 stainless steel. It is found that grain size and cold work induced changes in yield strength, ductility, and preferred orientation have a minor effect on FCP. Rather, cyclically stabilized properties of material in the crack tip plastic zone are believed to control the FCP process. Although mechanical processing fails to significantly alter the rate of FCP, it is apparently responsible for the unique fracture path observed in specimens oriented at an angle(A) to the rolling direction. Deviation of the crack path out of the plane of maximum net section stress is believed to be associated with mechanical fibering andJor crystallographic texturing effects. The complex fracture mode transition observed in cold worked 70/30 brass also is associated with the deformation texture of the starting material. For the cold-worked 305 stainless steel, striation spacings are correlated with the stress intensity range for specimens tested in the longitudinal, transverse, and “angle” orientations. Comparison of these data with corresponding macroscopic data indicate that an approximately one-to-one correspondence exists between macroscopic and microscopic fatigue crack growth rates over the range investigated.  相似文献   

16.
The tensile behavior and properties of cold formed low-carbon microalloyed steel with its microstructure of all ferrite and pearlite (F+P) were investigated.Bending and flattening deformations were carried out in the laboratory on hot-rolled sheets in order to simulate the cold forming process of steel sheets during pipe fabrication and sampling of high frequency straight bead welding pipes.A comparison of the tensile behavior and properties of the material made before and after cold forming indicates that cold deformation alters the tensile behavior and properties of the material to a certain degree depending on the manner of the cold deformation and the degree.The research on the Bauschinger effect indicates that for the steels investigated,when the plastic strain is small,the back stress increases rapidly with the increase of the plastic strain and then rapidly tends to saturation.The finite element analysis indicates that the change in the properties of the steel sheets due to cold forming is a result of the Bauschinger effect and work hardening.The mechanism of the change in the properties is also given in this study.  相似文献   

17.
《钢铁冶炼》2013,40(4):360-368
Abstract

The influence of carbon steel work hardening ratio on the intensity of undershooting of outside diameter was investigated in the cold extrusion of carbon steel tube. Steel tubes with carbon contents ranging from ~0 to 1·0 wt-% were subjected to cold extrusion through a die and the intensity of undershooting of attaining the outside diameter was measured to evaluate the influence of the work hardening ratio. As an index of work hardening ratio, the so called n value was determined for each parent material using a stress–strain curve drawn by carrying out a tensile test. The n value decreases with increasing carbon content and the higher the n value, the higher is the intensity of undershooting. Elastic–plastic finite element analysis was carried out to simulate the experimental data and also, to design an appropriate die geometry for suppressing the undershooting phenomenon. The solution was the adoption of a double taper die for the suppression of the undershooting phenomenon due to the work hardening ratio.  相似文献   

18.
The high temperature flow stress behavior of an electron beam melted 26 Cr-1 Mo ferritic stainless steel was determined for large torsion strains (e ~ 15) over a temperature range from 400 °C (750 °F) to 1000 °C (1830 °F) and a strain rate range from 6 × 10-3 to 6.3 s-1. The room temperature compressive yield strength measured after torsional warm working was also investigated. It was found that the high temperature flow strength and the room temperature compressive yield strength were strong functions of the subgrain size. Strain softening was observed during warm working while the room temperature compressive yield strength was found to increase with prior torsional strain. The increase in the subgrain misorientation angle and, to a lesser extent, the subgrain shape change that occurs with increased warm working strain appear to be responsible for the strain dependence of the flow stress at both elevated and low temperatures. At the time this investigation was performed, all authors were affiliated with the Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305.  相似文献   

19.
采用室温拉伸及硬度测试研究了不同的冷变形量对316L不锈钢室温力学性能及硬度的影响,并通过OM、TEM对冷变形后组织结构的观察,分析讨论了不同变形后力学性能及硬度的变化机制.结果表明,冷变形使材料的强度和硬度得到大幅度提高,但塑性有所降低.冷变形量为25%时,钢的屈服强度可达到745 MPa,同时伸长率达到19.3%.随冷变形量的不同,该钢加工硬化能力不同.变形量低于2.5%时,强度、硬度增加的速度较快,而变形量高于约2.5%后,强度、硬度增加的速度却相对较小,其原因是变形机制不同.另外,冷变形后钢的屈服强度与硬度有着相似的变化规律,由此提出了由冷变形后硬度变化预测冷变形后拉伸屈服强度的方程.  相似文献   

20.
《粉末冶金学》2013,56(1):63-66
Abstract

This paper presents the analysis of research results concerning the application of PM technology to produce porous implantation material from Co-Cr-Mo alloy. Rotary cold re-pressing and heat treatment has been used to increase the density and mechanical properties of sintered samples. The microstructure, hardness and compressive properties, and ultrasonic data of the obtained materials were investigated. The material had about 10% of porosity and has higher mechanical properties, i.e. UCS and plastic strain, compared with cast cobalt alloy, and had 25% lower values of Young's modulus and shear modulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号