首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Self‐assembly of nanoparticles (NPs) forming unique structures has been investigated extensively over the past few years. However, many self‐assembled structures by NPs are irreversible, because they are generally constructed using their suspensions. It is still challenging for NPs to reversibly self‐assemble in dry state, let alone of polymeric NPs with general sizes of hundreds of nm. Herein, this study reports a new reversible self‐assembly phenomenon of NPs in dry state, forming thermoreversible strip‐like supermolecular structures. These novel NPs of around 150 nm are perfluorinated surface‐undecenoated cellulose nanoparticles (FSU‐CNPs) with a core‐coronas structure. The thermoreversible self‐assembled structure is formed after drying in the air at the interface between FSU‐CNP films and Teflon substrates. Remarkably, the formation and dissociation of this assembled structure are accompanied by a reversible conversion of the surface hydrophobicity, film transparency, and anisotropic properties. These findings show novel feasibility of reversible self‐assembly of NPs in dry state, and thereby expand our knowledge of self‐assembly phenomenon.  相似文献   

4.
5.
This review discusses the potential of block copolymer type macromolecular building blocks for the preparation of self‐assembled materials. Three different classes of block copolymer type architectures will be distinguished: (i) coil–coil diblock copolymers, (ii) rod–coil diblock copolymers, and (iii) rod–coil diblock oligomers. The basic principles that underlie the self‐assembly of each of these different building blocks will be discussed. These theoretical considerations are complemented with examples from recent literature that illustrate the potential of the different types of block copolymers to prepare (functional) supramolecular materials. Finally, several strategies will be presented that could allow the preparation of stimuli‐sensitive self‐assembled materials, i.e., materials whose properties can be reversibly manipulated under the action of appropriate external stimuli.  相似文献   

6.
7.
8.
9.
The self‐assembly of cylinder‐forming block copolymer (BCP) microdomains confined within chemical stripe patterns of widths incommensurate with the natural period of the copolymers, L0, is studied. It is shown that this incommensurability causes changes in both the shapes of the microdomains and their spatial period. Specifically, a transition from n to n + 1 rows of microdomains is observed when the stripe width is about n ± 1/2 L0. When the stripe's width is comparable to L0, ellipticity of microdomains can be induced with an aspect ratio up to 2.2. Free energy models are applied to describe the energetic origin of such behavior. Although our observations qualitatively resemble results in sphere‐forming BCPs confined in topographical trenches, the quantitative difference is noteworthy and technologically important for the design of nanostructures with programmable shapes.  相似文献   

10.
11.
12.
A sacrificial‐post templating method is presented for directing block copolymer self‐assembly to form nanostructures consisting of monolayers and bilayers of microdomains. In this approach, the topographical post template is removed after self‐assembly and therefore is not incorporated into the final microdomain pattern. Arrays of nanoscale holes of different shapes and symmetries, including mesh structures and perforated lamellae with a bimodal pore size distribution, are produced. The ratio of the pore sizes in the bimodal distributions can be varied via the template pitch, and agrees with predictions of self consistent field theory.  相似文献   

13.
14.
Negative‐tone block copolymer (BCP) lithography based on in situ surface chemical modification is introduced as a highly efficient, versatile self‐assembled nanopatterning. BCP blends films consisting of end‐functionalized low molecular weight poly(styrene‐ran‐methyl methacrylate) and polystyrene‐block‐Poly(methyl methacylate) can produce surface vertical BCP nanodomains on various substrates without prior surface chemical treatment. Simple oxygen plasma treatment is employed to activate surface functional group formation at various substrates, where the end‐functionalized polymers can be covalently bonded during the thermal annealing of BCP thin films. The covalently bonded brush layer mediates neutral interfacial condition for vertical BCP nanodomain alignment. This straightforward approach for high aspect ratio, vertical self‐assembled nanodomain formation facilitates single step, site‐specific BCP nanopatterning widely useful for various substrates. Moreover, this approach is compatible with directed self‐assembly approaches to produce device oriented laterally ordered nanopatterns.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号